pride-data-analysis/analysis/code/project_functions1.py

69 lines
2.3 KiB
Python

import pandas as pd
def load_and_process():
# cords - mapping zip codes to long/lat coordinates
cords = pd.read_csv("../data/raw/zip_lat_long.csv")
## counties - Relating US counties to their long/lat position on the Earth
# Combine the county name with the state code
def combine_name_state(row):
row["name"] = f"{row['name']} {row['STUSAB']}"
return row
counties = (
pd.read_csv("../data/raw/us-county-boundaries.csv", sep=";")
.rename({
"NAME": "name",
"INTPTLAT": "lat",
"INTPTLON": "long",
}, axis="columns")
.apply(combine_name_state, axis="columns")
.drop(["STUSAB"], axis="columns")
)
## pol - Election results from the 2012 American presidential election
def combine_name_state(row):
row["county"] = f"{row['county']} {row['state']}"
return row
pol = (
pd.read_csv("../data/raw/countypres_2000-2020.csv")
.query("`year` == 2012")
.reset_index()
.drop([
"year", "state", "county_fips", "office",
"candidate", "version", "mode", "index",
], axis="columns")
.rename({
"county_name": "county",
"state_po": "state",
"candidatevotes": "votes",
"totalvotes": "total"
}, axis="columns")
.apply(lambda x: x.str.capitalize() if x.name == "county" or x.name == "party" else x)
.apply(combine_name_state, axis="columns")
.merge(counties, left_on="county", right_on="name")
.drop(["state", "name"], axis="columns")
.assign(percent=lambda x: x.votes/x.total)
)
## gb - the gaybourhoods dataset
gb = (
pd.read_csv("../data/raw/gaybourhoods.csv")
.merge(cords, left_on="GEOID10", right_on="ZIP") \
.drop([
"Mjoint_MF", "Mjoint_SS", "Mjoint_FF", "Mjoint_MM",
"Cns_TotHH", "Cns_UPSS", "Cns_UPFF", "Cns_UPMM",
"ParadeFlag", "FF_Tax", "FF_Cns", "MM_Tax", "MM_Cns",
"SS_Index_Weight", "Parade_Weight", "Bars_Weight",
"GEOID10", "ZIP",
], axis="columns") \
.rename({
"LAT": "lat",
"LNG": "long",
}, axis="columns")
)
return (gb, pol, counties, cords)