pride-data-analysis/analysis/Book Sami.twb

2791 lines
188 KiB
XML

<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20224.23.0209.1653 -->
<workbook original-version='18.1' source-build='2022.4.1 (20224.23.0209.1653)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.AccessibleZoneTabOrder.true...AccessibleZoneTabOrder />
<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<AutoCreateAndUpdateDSDPhoneLayouts />
<MapboxVectorStylesAndLayers />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SetMembershipControl />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
</_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule>
</_.fcp.AnimationOnByDefault.false...style>
<datasources>
<datasource caption='tax_and_gay' inline='true' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='tax_and_gay' name='textscan.0ymouyf0lohvbk1ef8t3h0xftmgh'>
<connection class='textscan' directory='C:/Users/samia/OneDrive/Desktop/data 301/project current/project-group-group-44/data/processed' filename='tax_and_gay.csv' password='' server='' />
</named-connection>
<named-connection caption='zip_lat_long' name='textscan.0nknilx0qr545516tlehx16c2uvd'>
<connection class='textscan' directory='C:/Users/samia/OneDrive/Desktop/data 301/project current/project-group-group-44/data/raw' filename='zip_lat_long.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.0ymouyf0lohvbk1ef8t3h0xftmgh' name='tax_and_gay.csv' table='[tax_and_gay#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_CA' separator=','>
<column datatype='integer' name='zip' ordinal='0' />
<column datatype='integer' name='zip 1' ordinal='1' />
<column datatype='real' name='population' ordinal='2' />
<column datatype='integer' name='gay tax rate' ordinal='3' />
<column datatype='real' name='overall tax paid' ordinal='4' />
<column datatype='integer' name='income' ordinal='5' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation type='collection'>
<relation connection='textscan.0ymouyf0lohvbk1ef8t3h0xftmgh' name='tax_and_gay.csv' table='[tax_and_gay#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_CA' separator=','>
<column datatype='integer' name='zip' ordinal='0' />
<column datatype='integer' name='zip 1' ordinal='1' />
<column datatype='real' name='population' ordinal='2' />
<column datatype='integer' name='gay tax rate' ordinal='3' />
<column datatype='real' name='overall tax paid' ordinal='4' />
<column datatype='integer' name='income' ordinal='5' />
</columns>
</relation>
<relation connection='textscan.0nknilx0qr545516tlehx16c2uvd' name='zip_lat_long.csv' table='[zip_lat_long#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_CA' separator=','>
<column datatype='integer' name='ZIP' ordinal='0' />
<column datatype='real' name='LAT' ordinal='1' />
<column datatype='real' name='LNG' ordinal='2' />
</columns>
</relation>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>&quot;UTF-8&quot;</attribute>
<attribute datatype='string' name='collation'>&quot;en_GB&quot;</attribute>
<attribute datatype='string' name='field-delimiter'>&quot;,&quot;</attribute>
<attribute datatype='string' name='header-row'>&quot;true&quot;</attribute>
<attribute datatype='string' name='locale'>&quot;en_CA&quot;</attribute>
<attribute datatype='string' name='single-char'>&quot;&quot;</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[zip_lat_long.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>&quot;UTF-8&quot;</attribute>
<attribute datatype='string' name='collation'>&quot;en_GB&quot;</attribute>
<attribute datatype='string' name='field-delimiter'>&quot;,&quot;</attribute>
<attribute datatype='string' name='header-row'>&quot;true&quot;</attribute>
<attribute datatype='string' name='locale'>&quot;en_CA&quot;</attribute>
<attribute datatype='string' name='single-char'>&quot;&quot;</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>zip</remote-name>
<remote-type>20</remote-type>
<local-name>[zip]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>zip</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>zip 1</remote-name>
<remote-type>20</remote-type>
<local-name>[zip 1]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>zip 1</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>population</remote-name>
<remote-type>5</remote-type>
<local-name>[population]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>population</remote-alias>
<ordinal>2</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>gay tax rate</remote-name>
<remote-type>20</remote-type>
<local-name>[gay tax rate]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>gay tax rate</remote-alias>
<ordinal>3</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>overall tax paid</remote-name>
<remote-type>5</remote-type>
<local-name>[overall tax paid]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>overall tax paid</remote-alias>
<ordinal>4</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>income</remote-name>
<remote-type>20</remote-type>
<local-name>[income]</local-name>
<parent-name>[tax_and_gay.csv]</parent-name>
<remote-alias>income</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>ZIP</remote-name>
<remote-type>20</remote-type>
<local-name>[ZIP]</local-name>
<parent-name>[zip_lat_long.csv]</parent-name>
<remote-alias>ZIP</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>LAT</remote-name>
<remote-type>5</remote-type>
<local-name>[LAT]</local-name>
<parent-name>[zip_lat_long.csv]</parent-name>
<remote-alias>LAT</remote-alias>
<ordinal>7</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>LNG</remote-name>
<remote-type>5</remote-type>
<local-name>[LNG]</local-name>
<parent-name>[zip_lat_long.csv]</parent-name>
<remote-alias>LNG</remote-alias>
<ordinal>8</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column aggregation='Avg' datatype='real' name='[LAT]' role='measure' semantic-role='[Geographical].[Latitude]' type='quantitative' />
<column aggregation='Avg' datatype='real' name='[LNG]' role='measure' semantic-role='[Geographical].[Longitude]' type='quantitative' />
<column aggregation='Sum' datatype='integer' default-format='*00000' name='[ZIP]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
<_.fcp.ObjectModelTableType.true...column caption='tax_and_gay.csv' datatype='table' name='[__tableau_internal_object_id__].[tax_and_gay.csv_2695AFE1365845F98E5AB43881776511]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='zip_lat_long.csv' datatype='table' name='[__tableau_internal_object_id__].[zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8]' role='measure' type='quantitative' />
<column caption='Gay Tax Rate' datatype='integer' name='[gay tax rate]' role='measure' type='quantitative' />
<column caption='Income' datatype='integer' name='[income]' role='measure' type='quantitative' />
<column caption='Overall Tax Paid' datatype='real' name='[overall tax paid]' role='measure' type='quantitative' />
<column caption='Population' datatype='real' name='[population]' role='measure' type='quantitative' />
<column aggregation='Sum' caption='Zip 1' datatype='integer' default-format='*00000' name='[zip 1]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
<column aggregation='Sum' caption='Zip' datatype='integer' default-format='*00000' name='[zip]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='&quot;Canada&quot;' />
</semantic-values>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='tax_and_gay.csv' id='tax_and_gay.csv_2695AFE1365845F98E5AB43881776511'>
<properties context=''>
<relation connection='textscan.0ymouyf0lohvbk1ef8t3h0xftmgh' name='tax_and_gay.csv' table='[tax_and_gay#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_CA' separator=','>
<column datatype='integer' name='zip' ordinal='0' />
<column datatype='integer' name='zip 1' ordinal='1' />
<column datatype='real' name='population' ordinal='2' />
<column datatype='integer' name='gay tax rate' ordinal='3' />
<column datatype='real' name='overall tax paid' ordinal='4' />
<column datatype='integer' name='income' ordinal='5' />
</columns>
</relation>
</properties>
</object>
<object caption='zip_lat_long.csv' id='zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8'>
<properties context=''>
<relation connection='textscan.0nknilx0qr545516tlehx16c2uvd' name='zip_lat_long.csv' table='[zip_lat_long#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_CA' separator=','>
<column datatype='integer' name='ZIP' ordinal='0' />
<column datatype='real' name='LAT' ordinal='1' />
<column datatype='real' name='LNG' ordinal='2' />
</columns>
</relation>
</properties>
</object>
</objects>
<relationships>
<relationship>
<expression op='='>
<expression op='[zip]' />
<expression op='[ZIP]' />
</expression>
<first-end-point object-id='tax_and_gay.csv_2695AFE1365845F98E5AB43881776511' />
<second-end-point object-id='zip_lat_long.csv_EA1829CF3CA8490894E3EAB97341B6C8' unique-key='true' />
</relationship>
</relationships>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontcolor='#b07aa1'>Logarithmic Regression of income tax paid by the Gay population VS the General population</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='tax_and_gay' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' />
</datasources>
<datasource-dependencies datasource='federated.0a0r44a1k0ra1y1cmt8ab15acxw6'>
<column caption='Gay Tax Rate' datatype='integer' name='[gay tax rate]' role='measure' type='quantitative' />
<column-instance column='[gay tax rate]' derivation='None' name='[none:gay tax rate:qk]' pivot='key' type='quantitative' />
<column-instance column='[overall tax paid]' derivation='None' name='[none:overall tax paid:qk]' pivot='key' type='quantitative' />
<column caption='Overall Tax Paid' datatype='real' name='[overall tax paid]' role='measure' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' field-type='quantitative' major-origin='1' major-spacing='10' scale='log' scope='cols' type='space' />
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' field-type='quantitative' major-origin='1.0' major-spacing='10.0' scale='log' scope='rows' type='space' />
<format attr='height' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' value='57' />
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' scope='rows' value='General Income Tax Paid' />
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' scope='cols' value='Gay Income Tax Paid' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' fit='linear' />
<style>
<style-rule element='mark'>
<format attr='size' value='0.14193369448184967' />
<format attr='shape' value='triangle' />
<format attr='mark-color' value='#b07aa1' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]</rows>
<cols>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]</cols>
</table>
<simple-id uuid='{03CB6918-0B9B-43AB-B6C5-9A357C9D373B}' />
</worksheet>
<worksheet name='Sheet 1 (2)'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontcolor='#4e79a7'>Linear Regression of income tax paid by the Gay population VS the General population</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='tax_and_gay' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' />
</datasources>
<datasource-dependencies datasource='federated.0a0r44a1k0ra1y1cmt8ab15acxw6'>
<column caption='Gay Tax Rate' datatype='integer' name='[gay tax rate]' role='measure' type='quantitative' />
<column-instance column='[gay tax rate]' derivation='None' name='[none:gay tax rate:qk]' pivot='key' type='quantitative' />
<column-instance column='[overall tax paid]' derivation='None' name='[none:overall tax paid:qk]' pivot='key' type='quantitative' />
<column caption='Overall Tax Paid' datatype='real' name='[overall tax paid]' role='measure' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='height' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' value='57' />
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' scope='rows' value='General Income Tax Paid' />
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' scope='cols' value='Gay Income Tax Paid' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<trendline enable-confidence-bands='false' enable-instant-analytics='true' enabled='true' exclude-color='false' exclude-intercept='false' fit='linear' />
<style>
<style-rule element='mark'>
<format attr='size' value='0.14193369448184967' />
<format attr='shape' value='triangle' />
<format attr='mark-color' value='#75a1c7' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]</rows>
<cols>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]</cols>
</table>
<simple-id uuid='{9D10588A-B020-41B3-8F23-CD8AD7A24DE5}' />
</worksheet>
<worksheet name='Sheet 3'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontalignment='1' fontcolor='#f9a655'>Analysis of the Gay and General tax rates of a sample of Zip Codes</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='tax_and_gay' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.0a0r44a1k0ra1y1cmt8ab15acxw6'>
<column caption='Gay Tax Rate' datatype='integer' name='[gay tax rate]' role='measure' type='quantitative' />
<column-instance column='[gay tax rate]' derivation='None' name='[none:gay tax rate:qk]' pivot='key' type='quantitative' />
<column-instance column='[overall tax paid]' derivation='None' name='[none:overall tax paid:qk]' pivot='key' type='quantitative' />
<column-instance column='[zip]' derivation='None' name='[none:zip:ok]' pivot='key' type='ordinal' />
<column caption='Overall Tax Paid' datatype='real' name='[overall tax paid]' role='measure' type='quantitative' />
<column aggregation='Sum' caption='Zip' datatype='integer' default-format='*00000' name='[zip]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' scope='rows' value='General Income Tax Paid' />
<format attr='title' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' scope='rows' value='Gay Income Tax Paid' />
</style-rule>
<style-rule element='map'>
<format attr='washout' value='0.0' />
</style-rule>
</style>
<panes>
<pane id='1' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Line' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<style>
<style-rule element='mark'>
<format attr='size' value='1.9010497331619263' />
</style-rule>
</style>
</pane>
<pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Line' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<style>
<style-rule element='mark'>
<format attr='size' value='1.9010497331619263' />
<format attr='mark-color' value='#818b91' />
</style-rule>
</style>
</pane>
<pane id='3' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Line' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<style>
<style-rule element='mark'>
<format attr='size' value='1.9010497331619263' />
<format attr='mark-color' value='#f9a655' />
</style-rule>
</style>
</pane>
</panes>
<rows>([federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk] + [federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk])</rows>
<cols>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]</cols>
</table>
<simple-id uuid='{84CEFF09-2250-4E46-BFEA-C4DEAAB8BFEC}' />
</worksheet>
<worksheet name='Sheet 4'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontcolor='#f28e2b'>Heat-Map of Income Tax Paid by Gay people</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='tax_and_gay' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.0a0r44a1k0ra1y1cmt8ab15acxw6'>
<column aggregation='Avg' datatype='real' name='[LAT]' role='measure' semantic-role='[Geographical].[Latitude]' type='quantitative' />
<column aggregation='Avg' datatype='real' name='[LNG]' role='measure' semantic-role='[Geographical].[Longitude]' type='quantitative' />
<column caption='Gay Tax Rate' datatype='integer' name='[gay tax rate]' role='measure' type='quantitative' />
<column-instance column='[LAT]' derivation='None' name='[none:LAT:qk]' pivot='key' type='quantitative' />
<column-instance column='[LNG]' derivation='None' name='[none:LNG:qk]' pivot='key' type='quantitative' />
<column-instance column='[gay tax rate]' derivation='None' name='[none:gay tax rate:qk]' pivot='key' type='quantitative' />
<column-instance column='[zip]' derivation='None' name='[none:zip:ok]' pivot='key' type='ordinal' />
<column aggregation='Sum' caption='Zip' datatype='integer' default-format='*00000' name='[zip]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LNG:qk]' field-type='quantitative' max='-7395069.9675469063' min='-16664892.392145993' projection='EPSG:3857' range-type='fixed' scope='cols' type='space' />
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LAT:qk]' field-type='quantitative' max='6729165.1882441072' min='3343378.9266947606' projection='EPSG:3857' range-type='fixed' scope='rows' type='space' />
</style-rule>
<style-rule element='mark'>
<encoding attr='color' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' type='custom-interpolated'>
<color-palette custom='true' name='' type='ordered-sequential'>
<color>#f1f1f1</color>
<color>#f2eada</color>
<color>#f3e3c3</color>
<color>#f5dcab</color>
<color>#f6d593</color>
<color>#f8ce7c</color>
<color>#f9c763</color>
<color>#fac04b</color>
<color>#fcb832</color>
<color>#fdb119</color>
<color>#ffaa00</color>
</color-palette>
</encoding>
</style-rule>
<style-rule element='legend-title-text'>
<format attr='size' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' value='Gay Income Tax Paid'>
<formatted-text>
<run>Gay Income Tax Paid</run>
</formatted-text>
</format>
</style-rule>
<style-rule element='map-layer'>
<format attr='enabled' id='b01002_001e' value='false' />
<format attr='enabled' id='b01002_002e' value='false' />
<format attr='enabled' id='b01002_003e' value='false' />
<format attr='enabled' id='dp02_0001e' value='false' />
<format attr='enabled' id='dp02_0015e' value='false' />
<format attr='enabled' id='dp03_0027e_plus_dp03_0029e' value='false' />
<format attr='enabled' id='dp03_0028e' value='false' />
<format attr='enabled' id='dp03_0030e_plus_dp03_0031e' value='false' />
<format attr='enabled' id='dp03_0062e' value='false' />
<format attr='enabled' id='dp03_0088e' value='false' />
<format attr='enabled' id='dp04_0001e' value='false' />
<format attr='enabled' id='dp04_0046e' value='false' />
<format attr='enabled' id='dp04_0047e' value='false' />
<format attr='enabled' id='dp04_0089e' value='false' />
<format attr='enabled' id='dp05_0001e' value='false' />
<format attr='enabled' id='dp05_0002e_div_dp05_0003e' value='false' />
<format attr='enabled' id='dp05_0032e' value='false' />
<format attr='enabled' id='dp05_0033e' value='false' />
<format attr='enabled' id='dp05_0034e' value='false' />
<format attr='enabled' id='dp05_0039e' value='false' />
<format attr='enabled' id='dp05_0047e' value='false' />
<format attr='enabled' id='dp05_0053e' value='false' />
<format attr='enabled' id='dp05_0066e' value='false' />
<format attr='enabled' id='dp05_0077e' value='false' />
</style-rule>
<style-rule element='map'>
<format attr='washout' value='0' />
<format attr='map-style' value='normal' />
</style-rule>
<style-rule element='map-data-layer'>
<format attr='palette' value='tableau-map-blue-green-light' />
<format attr='geo-area-type' value='State' />
</style-rule>
</style>
<panes>
<pane id='8' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<size column='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' />
<lod column='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]' />
</encodings>
<customized-tooltip>
<formatted-text>
<run fontcolor='#787878'>Gay Tax Rate:&#9;</run>
</formatted-text>
</customized-tooltip>
<style>
<style-rule element='mark'>
<format attr='has-stroke' value='true' />
<format attr='stroke-color' value='#f28e2b' />
<format attr='has-halo' value='false' />
<format attr='mark-color' value='#ffbe7d' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LAT:qk]</rows>
<cols>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LNG:qk]</cols>
</table>
<simple-id uuid='{4F59D6FF-070C-4589-AD6F-86B5D8A85FD8}' />
</worksheet>
<worksheet name='Sheet 4 (2)'>
<layout-options>
<title>
<formatted-text>
<run bold='true' fontcolor='#818b91'>Heat-Map of Income Tax Paid by the General population</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='tax_and_gay' name='federated.0a0r44a1k0ra1y1cmt8ab15acxw6' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.0a0r44a1k0ra1y1cmt8ab15acxw6'>
<column aggregation='Avg' datatype='real' name='[LAT]' role='measure' semantic-role='[Geographical].[Latitude]' type='quantitative' />
<column aggregation='Avg' datatype='real' name='[LNG]' role='measure' semantic-role='[Geographical].[Longitude]' type='quantitative' />
<column-instance column='[LAT]' derivation='None' name='[none:LAT:qk]' pivot='key' type='quantitative' />
<column-instance column='[LNG]' derivation='None' name='[none:LNG:qk]' pivot='key' type='quantitative' />
<column-instance column='[overall tax paid]' derivation='None' name='[none:overall tax paid:qk]' pivot='key' type='quantitative' />
<column-instance column='[zip]' derivation='None' name='[none:zip:ok]' pivot='key' type='ordinal' />
<column caption='Overall Tax Paid' datatype='real' name='[overall tax paid]' role='measure' type='quantitative' />
<column aggregation='Sum' caption='Zip' datatype='integer' default-format='*00000' name='[zip]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LNG:qk]' field-type='quantitative' max='-5750441.2434819899' min='-16099898.357316228' projection='EPSG:3857' range-type='fixed' scope='cols' type='space' />
<encoding attr='space' class='0' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LAT:qk]' field-type='quantitative' max='6690737.773835279' min='2963485.8743776535' projection='EPSG:3857' range-type='fixed' scope='rows' type='space' />
</style-rule>
<style-rule element='legend-title-text'>
<format attr='size' field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' value='General Income Tax Paid'>
<formatted-text>
<run>General Income Tax Paid</run>
</formatted-text>
</format>
</style-rule>
<style-rule element='map-layer'>
<format attr='enabled' id='b01002_001e' value='false' />
<format attr='enabled' id='b01002_002e' value='false' />
<format attr='enabled' id='b01002_003e' value='false' />
<format attr='enabled' id='dp02_0001e' value='false' />
<format attr='enabled' id='dp02_0015e' value='false' />
<format attr='enabled' id='dp03_0027e_plus_dp03_0029e' value='false' />
<format attr='enabled' id='dp03_0028e' value='false' />
<format attr='enabled' id='dp03_0030e_plus_dp03_0031e' value='false' />
<format attr='enabled' id='dp03_0062e' value='false' />
<format attr='enabled' id='dp03_0088e' value='false' />
<format attr='enabled' id='dp04_0001e' value='false' />
<format attr='enabled' id='dp04_0046e' value='false' />
<format attr='enabled' id='dp04_0047e' value='false' />
<format attr='enabled' id='dp04_0089e' value='false' />
<format attr='enabled' id='dp05_0001e' value='false' />
<format attr='enabled' id='dp05_0002e_div_dp05_0003e' value='false' />
<format attr='enabled' id='dp05_0032e' value='false' />
<format attr='enabled' id='dp05_0033e' value='false' />
<format attr='enabled' id='dp05_0034e' value='false' />
<format attr='enabled' id='dp05_0039e' value='false' />
<format attr='enabled' id='dp05_0047e' value='false' />
<format attr='enabled' id='dp05_0053e' value='false' />
<format attr='enabled' id='dp05_0066e' value='false' />
<format attr='enabled' id='dp05_0077e' value='false' />
</style-rule>
<style-rule element='map'>
<format attr='washout' value='0' />
<format attr='map-style' value='normal' />
</style-rule>
<style-rule element='map-data-layer'>
<format attr='palette' value='tableau-map-blue-green-light' />
<format attr='geo-area-type' value='State' />
</style-rule>
</style>
<panes>
<pane id='8' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<size column='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' />
<lod column='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]' />
</encodings>
<customized-tooltip>
<formatted-text>
<run fontcolor='#787878'>Gay Tax Rate:&#9;</run>
</formatted-text>
</customized-tooltip>
<style>
<style-rule element='mark'>
<format attr='has-halo' value='false' />
<format attr='mark-color' value='#a7acad' />
<format attr='has-stroke' value='true' />
<format attr='stroke-color' value='#606b76' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LAT:qk]</rows>
<cols>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:LNG:qk]</cols>
</table>
<simple-id uuid='{15EC1DDE-6797-43D4-ACBE-9FDCD010CEED}' />
</worksheet>
</worksheets>
<dashboards>
<dashboard _.fcp.AccessibleZoneTabOrder.true...enable-sort-zone-taborder='true' name='Dashboard 1'>
<style />
<size maxheight='900' maxwidth='1600' minheight='900' minwidth='1600' preset-index='8' sizing-mode='fixed' />
<zones>
<zone h='100000' id='4' type-v2='layout-basic' w='100000' x='0' y='0'>
<zone h='98222' id='14' param='horz' type-v2='layout-flow' w='99000' x='500' y='889'>
<zone h='98222' id='10' param='horz' type-v2='layout-flow' w='99000' x='500' y='889'>
<zone h='98222' id='8' type-v2='layout-basic' w='99000' x='500' y='889'>
<zone h='34201' id='3' name='Sheet 1' w='48687' x='50813' y='889'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='34201' id='5' name='Sheet 1 (2)' w='50313' x='500' y='889'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='35354' id='6' name='Sheet 3' w='99000' x='500' y='35090'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='28667' id='7' name='Sheet 4' w='35817' x='500' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='28667' id='11' name='Sheet 4' pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' type-v2='size' w='12576' x='36317' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='28667' id='12' name='Sheet 4 (2)' w='36320' x='48893' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='28667' id='15' name='Sheet 4 (2)' pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' type-v2='size' w='14287' x='85213' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
</zone>
</zone>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
<devicelayouts>
<devicelayout auto-generated='true' name='Phone'>
<size maxheight='1550' minheight='1550' sizing-mode='vscroll' />
<zones>
<zone h='100000' id='23' type-v2='layout-basic' w='100000' x='0' y='0'>
<zone h='98222' id='22' param='vert' type-v2='layout-flow' w='99000' x='500' y='889'>
<zone fixed-size='280' h='34201' id='5' is-fixed='true' name='Sheet 1 (2)' w='50313' x='500' y='889'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone fixed-size='280' h='34201' id='3' is-fixed='true' name='Sheet 1' w='48687' x='50813' y='889'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone fixed-size='280' h='35354' id='6' is-fixed='true' name='Sheet 3' w='99000' x='500' y='35090'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone fixed-size='250' h='28667' id='7' is-fixed='true' name='Sheet 4' w='35817' x='500' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone h='28667' id='11' name='Sheet 4' pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' type-v2='size' w='12576' x='36317' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone fixed-size='250' h='28667' id='12' is-fixed='true' name='Sheet 4 (2)' w='36320' x='48893' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
<zone h='28667' id='15' name='Sheet 4 (2)' pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' type-v2='size' w='14287' x='85213' y='70444'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
</devicelayout>
</devicelayouts>
<simple-id uuid='{6E45B308-007E-4E74-B691-5DF780C32F6E}' />
</dashboard>
</dashboards>
<windows source-height='30'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<simple-id uuid='{2C466E4F-4C3F-4B7B-A463-5D7EDB4211FE}' />
</window>
<window class='worksheet' name='Sheet 1 (2)'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<selection-collection>
<node-selection select-tuples='false'>
<oriented-node-reference orientation='horizontal'>
<node-reference>
<axis>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]</axis>
</node-reference>
<page-reference />
</oriented-node-reference>
</node-selection>
</selection-collection>
</viewpoint>
<simple-id uuid='{B7F39D08-947D-42A7-85E8-86D8556D453A}' />
</window>
<window class='worksheet' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[attr:gay tax rate:qk]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[sum:overall tax paid:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{06CB5C66-0C65-4365-A381-F07D1E6E7051}' />
</window>
<window class='dashboard' maximized='true' name='Dashboard 1'>
<viewpoints>
<viewpoint name='Sheet 1'>
<zoom type='entire-view' />
</viewpoint>
<viewpoint name='Sheet 1 (2)'>
<zoom type='entire-view' />
</viewpoint>
<viewpoint name='Sheet 3'>
<zoom type='entire-view' />
</viewpoint>
<viewpoint name='Sheet 4'>
<zoom type='entire-view' />
<highlight field='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' type='size'>
<bucket-selection />
</highlight>
</viewpoint>
<viewpoint name='Sheet 4 (2)'>
<zoom type='entire-view' />
</viewpoint>
</viewpoints>
<active id='3' />
<simple-id uuid='{5E18D0A9-7BC0-42E4-B934-1F3E18AD402F}' />
</window>
<window class='worksheet' name='Sheet 4'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
<strip size='160'>
<card type='title' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]' type='size' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:ok]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[sum:overall tax paid:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{54FC3629-08CE-4CA0-A29F-783C917C1BA2}' />
</window>
<window class='worksheet' name='Sheet 4 (2)'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
<strip size='160'>
<card type='title' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='8' param='[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:overall tax paid:qk]' type='size' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:ok]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:gay tax rate:qk]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[none:zip:ok]</field>
<field>[federated.0a0r44a1k0ra1y1cmt8ab15acxw6].[sum:overall tax paid:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{D44F96D2-9960-43C0-ABD5-FEDBDC52FE43}' />
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Dashboard 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOy9d5Ac2Xng+UtT3nVVewc0Gt6NdxzOkEPvSZEUKVJeK+pOy73b2FWsbjdi
7yKo3dNeSLq75Uq7e6cbGVKiJA7JGXK8wQyAGXjv2qC9q+4u0+V9pbs/srvQDXQ1uhsYYADU
LwKBrsx8+b738vvyfc99KRiGYVCjxj2KeLsFqFHjdlIzgBr3NDUDqHFPUzOAGvc0NQOocU+z
xACGRiOUALQyZ4aia77ZkTND/Hh/H8FE8YYFOzMws+pri9ksP3j9IjkNZmajzKTLN5x/Npsn
W9bXlfb0ItnfOTsGwLmLk+SqXB9OmGdOXJykmuTFQpFXDvfz2pnJdclUjQPz8i2wUO5UIsVQ
uJrEYKglLo4nAOgZjRCLJfnp/l56gykAEskcZR0GBieIFJa/h6YovHV8gBePjrDOqubEmbGq
9boapO9973vfW/hx8uwYbd1N2ESDeKpMJJbkTP80utVOKZ3irXNBNrQGOHtphFOjcTa3urkw
FGEqXqC93sWx/lm+8ZFt/OLIIJvqHbx8bISGBh/xaIx956ewO2yEokn6JuLYBZXXz0zS2ern
XM8Yp8ZTtLklXjo6hNXpBE0j4LLw2tEBsrqEmstycmCWSE6js95FsVDglaODaBYbFy4MMpkT
eGR7C2qhiGi3cf7SOCeHImxsD3Cxd4y+cB6fpPHKiTECAS8j47Mc750mnMzRP5NhU72DV44M
oFtsNHpsvPrOWQ4Oxuhq8vDm8SFKgoVsMo1skRiP5mnw2jnVM87xvhmaGuvoG5jg+NAcm9oD
pLNFnLLBS0eHmEgUeGxbC/2D0/TNxlF0mVA0SUvARc9YlCa/jf/8D0eJl0HJ5hiPJEkrArJS
5LVT47Q1+3FYRH72ziU+8vh2NtY7kQyVl44MkFIEUskMfr+b/vEITX4XfSOznOgLgs0BxVyl
vGOTIY73BnF43ARnEzS5JC7N5hifnqO70cVLR8wynj3Tz8HBGNs66tFFkVg4yoGeWTa2+jl9
aZSTA2E6WuuxW2X2nx5md4eXQ5djDI7O8JHHd+C3SzhsFv7u50fpiZbwSmV6gmliWYVGp8BL
R4Zw+zz4HBZeO9TLzl3d3NfuRbRIHD41xHRGw0WZI30zjM0V6PBZefnIAJLDSSSWZnwygi7C
myeGsTiczExF6ehuwrZOA6jiAqn0jsUZmIzxzKNdnO0N8uqJUdrdAm9fmkWyWBFzKYbCWd7r
DfPA5kYAUokU//dPjnP/jk5ePzbEhmYPb5wc5WDPDJ/f08iFYIajFybYs7WVV4+PsMEv8+a5
IEPBOPl8iWAoQaakkS8p9I5FOHF2hN33baF/YIqxYJQt2zYwNhECYP/JEZ5+bDtnesbZs6mJ
Zx7dikuCSCROJKcwGSuyu9HC+cFpxgsWPrqrhX3npvjKh7fy9qlhhqaTfGxXI3HNSjad4fiZ
IWx1XvafGgZgS0eAjz+xA7uh0NEa4GTPBJ2NLv7PH5+ko8kDwFg0y+cf62T/mUkEScah5OgL
5ekZi/DGyRE+8+Ed+O1Xqviph7Zwvm8CNZ3mWN8UkaIIyGzpbuKrT2wC4NH7uukfnua1Y0Ns
aLDz5mnzja9LMkIhx5/9+CTZskpzYx1n+6fwimXe6wkyGjVb3ctTcT79+FZOXhy/pryfe2IL
h8+N0TsWAaVEz/zbuly+UsaFcsvFDGOxHMcHY3xmTz2vn5tmPJrjwTYHvTNZQMBvEznZP8PO
be18+SO7OHluiIN9YQC2djTw5ae3IwO7t3USDIZ56/gQrc0+3jxp1nFGhRabzvefO8ylwRmG
MwbnLo4xE0viaWwkEolx6NQQ3nofb58cpnc4SH1LA6KisrmzniMXx9ep9lUNQOWFd3oqTZ9k
kXFYZUQM2v0OxhJltjXbOdEzw1y2jA5sbAtglQQAfH4fv/XJnfSPRuhs8jA0nWR7ZwCLofLq
6QkAAgEv9U4LHfVORiJFtrd78LnsJJJZDKsVp0Vgei4LQGerj32H+8gLMhICbocVSTTz2tTs
4cV3exEs9mUL5nJYkSURi9NJIhTmjXNBmtwyPznQR33Ah9VqwS6L2K0ysiTS3lzH9EyMTR0N
ANTXudh/tI/esRj9wTiKBpfHIjyytZGLE2bTn0pk+MmBATrbfZzqnSaSLrIwrdjssfLioQGS
RbNtl2WBtw71IdmdPHhfF68eHuZD28y8WuwCPz02BqKE2y4jigIdjW6GQzm2d9YBsL3ZyYun
JvG6bUQjcS5NxCkqOp1dHZw+NcDje9oB0NUyLxzsxe3zLClvuVDkpwd6aWyoQy8V+fnxK67P
1PSVMi6UO62Y6mExyjx/dJxNrV5cdgsWSWRh7vSxrQ387EyEHU12zg8EyasGwvw9G/12Xjh4
GXX+WYiiyIZmLyPBBFs7zXI/tinADw8M4nTYaQh4UHI5mhp8iIvSdDT7mJiO091Rj2S1093k
ZnAyyvB0Au0mTOEKt2Im+MiZIQZnkjzw4A4e7PC839ndMn5+6DJffXrHmtP1D00xktT54qMb
b1iGqWCYI2NpvvX01hVlevFQP195eucN53e3cUsMoEaNDyq1YdAa9zQ3ZADPvdOz5PfMbJRY
QSc2l2BsLn9DgtWocSuQF/84eGqQeLaEv6kRP0V6gin27uoiNDlNMl9m89Yu0vEET22t58Ss
OWIdn0vw1vkggQY/8ckJYqKPLzzQRE608s6xPqbTCp/60Hb2H+qjbMDnP3YfzS55WWFq1LjV
LGkBEkWdr31sL+HQHJdDWX79M/fRPzhFURf5lU/uZWRkhkgih6EqzGVNA8gWFLZsbGI2kmRr
R4BPf3gHUrlIuphnLi/z7Sc6OTwQxu318NRWP8FE6bYUtEaN5VhiAFqpwI/3XWDjxhZ2tLj5
0ZsX2bmtk3Qyzd+/eYk9Ozvx2wReOTdDg9tKk9+FUi4zMBXD4bDR1dHEe8f60Kx2vHYnDU6V
fzw2xVPbm6n3OXA47LhttW5HjQ8OS0aBDl2c5On7Nlxz0eGLkzy1zPEaNe50asOgNe5pav5I
jXuam2IAq2lEVFV93+59M9LcCXmtN93dmtd60y1Oc1MMQNfXuZZ1FWiadkvS3Al5rTfd3ZrX
etMtTlNzgWrcdIZmUrdbhFVzywxgvRZe485jOn4jW1RuLctOyRq6jjqvsLLFUlnieiNIknQT
7lLjTuCZPW23W4RVs6wBFHMpXnz5DWyClU9/++u4brVUNWrcIpZ1gRweLx/50KM4m5tw3KSM
ai5QjQ8iVfoABpl0mnh4DuUmZVRzgWp8EKliADI5JUtydo7aNHGNu5llDSA3N000XuCz3/pl
lt9xu3ZqLlCNDyLLGkAmkUayS5w7dqrmAtW4q1l2FKhl604CGzcjvo8zvDVqfBCoOhE22nuG
Hz730k3rA9RcoBofRKoagNvvp7OxkZvVBtRcoDsTTdcZCaVvtxjvG8sagFIskld0EpHIrZan
xgeMbEEllb/xWKsfVJbtAwR7LzGpaGzcseWmLRbSNA1Zrm2Gv1FKioZqCNgtt6ZF9bmsPNTd
cEvyuh0sq5H1GzbR1tiw7oCjy1FzgW4Ow6E0kiSxZ0PgdotyQ8SzRfZfmuGXP9R9W+VY9gXv
bWwgGRzm7Nl+1reNpcb7xe5O/5qUX9N1RsOZ91Gi9RFw22+78sMKneBMJsG5UxdvWie4Ngp0
e8gWVNKFmzWbc/dR1QCy6TJbd264Zil0Lhnj8sg4mUyWeDy+6oxqLtDtweey8kDXne0uvZ9U
7ZVquo7Ndu1a0EwuB5pGeHYSLF7q6urQdf26ezPX2wLour7m/cTrSXMn5LXedHdrXutNtzhN
VQMI+FzsOzHIw48/tOS4y+UiGg8TaGtBKRYQRBHRMK77hl/vKJCqqmtOt540tyuvkVCariY3
kri68ba7vT5uRbrFaaqmLKo67c3118wEe+rq2VtXv2ZBay7QUuLZEpKk4rTJKJqBVNudfVuo
bjqyk11dblTAchMyqs0DLCVbVBFFna6mu+eDIXciVd87LqnEG0fPrmAha6PWAixlQ4Prlin/
/p7ZW5LPnUhVA5gJJ3hwz/ZbKUuNdRDLFIllVv4sbXdzrZWpxrIGkE9GKSNTLt+8NSC1eYDr
E88W+dmx0TWlyRQUMtcZ5+9qdN+IWHc1NyU4rqZp13Vx7taRiNs96vHsvn5+71Mrf/zuXqqP
taap2gK89957vPfe8Zu2I+x2ouk67/bOoK1hg89IKH3dZcBHLofIl2/NYpFqy5KXU/59F4Jr
uveZkShnRqLrlu1OQlVV8vk8sViMmZmZ5fu4zrpGPLYLvHfgMo985Ik7fhQoW1ApqzrZgorP
ZV1VmoUlwCOhNCeGwvzKhzdfM1bf3exBEtYWNmzBX/c5rq2LoZkUW9t8y6a7sizZed08trR4
1yTTw/MfOr8RVpL9/UDXdYrFIvl8HkVRKJVKFItFSqUSilL9tS1JErIs43K5sNls1Qd5vA1d
fOILzTdtU/ztHAXyuax86v6Oa46n8mV8zuUNYmEJcCJboqRoS4wnlS/jdVpp9btWNQt55HKI
Bzc14LTJZAoKPz06wr/+4p7K+YXJsBdOjPFvv/pA1TI81N3Aez3TPLK1mVS+TL6ksnkZZd/U
XN0A3i9FnY7n1nVfXdcplUpLFHlBmRf3QQ3DQFj0shFFEZvNhsViwel04nK5qK+vrxwTVngx
rWoizGaUCKZLaNwZEXQNA9KFpQq9oKgCpgtxuD/EUztb+PmJcR7Z3Mh7fTN888NbsFskioq2
bCvld9to9jnpmYqTL6l86v4OTgyG2dXpZyKa5cGuAKpxpYO/3Dp9TdOZ/8A9XU0e/vCXHlhi
OKl8mWxB5ZtPdrPvQvAaY11cjk3NHkQB6lzWJXktVmxN1xmPZJc1jul4DnFemOXOV2PB/bo6
zcLxj+5urbyRVVWtvI0XFHmhq3m1IguCsESRHQ4Hfr8fm82G1WpdUZFh/X2HBaqmjCVmGe9J
8eiHH7kjXKBErsjp4SiffqCzcuzEYJjL00n+5Rf2VtygcLJAq9/JicEwD3U3MjybYs+GAL2T
cQzD4JEtTRQVjXS+TJPPXAvV1eRhf880Tqsp/6cf6KRYVpFEgeeOjNLd4uXYQJgvPrKR7mYv
B3qmeWJbM/Ues/3UDCipOvYq3tdCa3NyOEKxrHJ8MMwT25qXlOORLY0E3HZcdgv2eTkcVrni
u2cKSsUAVtrF9cyeNhLZ6h8qNAyDcrl8zVs5FEtTKpVIBC1Lrs0UFQQEEkGL6VIsci98Ph82
mw2bzfa+K/J6qToKNDFwjhffucA//+5vX9cAbsco0GK3YmH48IEuU5G8dpmRSAarLLGlxctw
KM35sTl+95M7eHbfZdL5Mr/3qZ2ViagzI1HeODfFUzuakWUJt93CC8dH6ah343fbCMaybGjw
YLdIWC0iDqvMg5saEEWB4ZkkboeVeLbEQ90NFMsqvVMJ6j12upo8pPJlNF3n2bf6+bdfe/Ca
cmm6zrP7LvP7n9nF8GyKTEFhJJzGMAy6m73X+Of/dGiIbz+9FVi+1VvAMAxUVaVUKpHL5Za4
F+eGQ3Q1urBV2VVmtVqXvJVtNht2ux2bzYZ4nTVLd9ooUFUDOP7efrD6ePiJh2+7AfztgaEl
ox2xTJHxSIYtrT58TivP7utnLl3ku5/dzdBsivd6p3E7bUxGMzhtZp5fe3wTp0eiXJqI8+jW
JoZnU3zjyc1MRDMMzab4Hz69i4tjcxQUjUiqwOH+EP/6S/fhtMkksiVa6hwMzaY43B/Cbbdg
kUWcNpm+yTi//9nd1LnM/XNXK+Vb56cqb28wXQav08LBS9M8tLmJdL6MgdkKpHJlRsJpNjV5
SBfKqJpBg9eOxy5XXIqFt3I2VyAUS9I3GePJHS3L1p3FYllWkRN5jXqvo9KS3MxndtcYwMjl
04wMF/jIF5++bkd4NQZQKpWw2da+yXJwOk4ybzbpD3U3UO+xc2E8xqtnJnhmdxu9Uwm+88md
/PzEKJ0NbgJuOwPTCYZm03zp0Y2cHokyly6SypfJFBRcNhmrLJIvqQiCgCiAAfyzT+zgaP8s
FybiaLrBng0BNjS4GZxNkS0oFMoqHoeFjno3hbLKaCiNoul0NrjJFBT+p8/vRhJFfnZslL6p
BL/5zDY2NnkQuOLD/+jgABdGw3z9sU6GgnPcv6GOUqmIXTKumXT84YEBdnX6EQWBR7c2V1wJ
i8WCze7g/GQKxZD40mPX31W1+IEv7k8scPWK1IU+xMYG511vAFVTutxeCnqK1Q0aXp/1jAKl
8mVS+TLb2wIkciWSuRIHe2Y4PRLlye3NvNs3y462Or7/ykVimSKXJuKIgkB7vZNQMs+hvln6
ggkskojbbkHVdBq8diYi5hbBHR11DM+maa5z0DMRZzScoazqeBwWLozHABCATFGhwWOnyWdH
NwxSuRLbW93EUllsep7LwRCvvlsgFEuTKxSRSgp/+/w4W1t97Oio4+xIlOY6JycvTrNjQwPR
aJTHNtfjcjrxeZqXdPgWOpV/8YePXFMfsUwRXdexyjJN9SLpRX5+UTE74gsd44Xh1nqPnb85
MMimJm+lA7+4RVqo58WjXMsNuV5tOMsZ0vvNSqN262XZFiA2NsRstkT/0Dhf+toXb0oLsBZL
XXAjXjk9wcZGN5PRLNF0kUyhTKGscX9XPUOzKZ7c0czrZ6euFGb+f6tFoqRcu/TCKptvuLKq
I4kCqqajayqaWqbRbSEYSWJoCrqqYJMMVE1DwGwhREGgWFaRJZGyqlPncZItG/i9LnKKQKPf
gy5IyBYrHfVu0oUyyVyZPZ0BIukCiWwJQYDf/8wuDvWF8LushJIF5jJF/sdP76y8fRPZEmdG
okiSQCxT4uN72yrKOh7JoOs63S0+YpkiZ0fnKiNGPZPm7ryF/cLjkQz5kkoiV+LxLQ1MxfJL
hkfzJZVzY3PMJvJL8qj2zF4+PUG2qPDtp7YA17p28WyRfRemebDLz7b2te9AW41+PHd4mF+Z
z38t6VbKa1kDKKXCHDpzGU2HT33yo9cdBr1RFyiWKXJsIMxIOI3DIrG5xcu7vbOmghrmQ704
EatcL4kCmm5U/scw0HUNVSmjKWU0VUFVyhiaQrlUwjCqzQALSJKMZLEiWyw4HQ5E2YImSLic
DiySRK6kYpVF2gMuwqkChbKKz2klmSvT6LUTTRep99jobvYyNN+J3bMhwEgozc6OOtL5MoOz
KQwD2gMu2utdTEZN5UwXFARgz8YAm5o8bGnx8fLpCTrrXVyYiPHNJzejG3BubI6P7m5lIpKl
pc7OS6cnmYnn+Orjm1acxCqWTQNo9NiWKMm+C0H8LiuJXJnuZm/F/bl6CHaxohTLKjOJPN0r
zDGkcmUGZ+I8unX5PslKfOD6AGthLS1AUdE4ejnE8GyKbe11nBqK0N3spWcyTq6kImJOjJjK
rKCp5Ypi63r1BXXigiLLlvn/rUgWK5LFgije+CScRRZRVB1ZFJAkkZKi0R5wEUrm0XQDv8tG
IlfCY7dgtUiAAQYkcmWe3tVSGTl64fgoHoeVM6NRWuucBDw2nFaZTFHBIon8+ke3kcqVOTkc
ocnnQNONSgfZHCZV2NTsI5zM8+EdLdftyC6u+wXGwulKa3B2dI7NzV58LuuS48ulWw13Wh9g
zQaQiM4yGU7R3tpEuVSkra1tWQPQNK0yERKJZzhwcYKntjXw+ulReifmMKpEHRVE042QZIv5
//w/WbYi3sBsslU2XReAgNtsieKLxsMDbhtuu0wkVaS93kUyV8IwoC1g+sFuu5Wh2SQOq8wX
H9mIwyoRy5QYj6RxWC184r52RsNp2vzOFZVyYQzeY5fuygVqd70BBINTWA2YK2SwyB42d7Wj
aRrnzp0DzKltURQRRRGLxYLD4SBV1OkNpnh8ZycH+ufmFXlp90kUwG6VaPWbXySbTeTwu2zE
MkXqPXbsVplmn41C2WwFMkWV9jpbxfB8DpmyZkZOE9Fo9nsolDWyhRJep43xuTybm5ykCyqt
fie5Ypl0QSXgthFN5elo8FQ29y/cc7Fha5pGpmjm7bFLleOKomCxWJa9fqW/F5aHr/b6hb8X
p1ltunK5jNVqvSUyrrc+rlf316uP9ZZrzQZQyCSYjKRoa2pAUcr4AwH02nLoW5LXetPdrXmt
N91N7wOsJizKegu40KK832nuhLzWm+5uzWu96RanuSmLL1YrwHpXhK4n3d2a13rT3a15rTfd
Qpqb0gLUqHGnIn3ve9/73vuZQSmXYmh8BodVJpvLYXc4VjV7GIvMEJpLYZEEsrkcDsfqvlgc
nhpHNSQUtYiKBesqAu6oxSyD4zPYLdKaZJwcG6aoCaCWyOZLOBzX3z0xNjZGnddJX/8Qst2O
WsghWu0rbqzJphIkc0VyyTnmUgUkwSC3ijoZGxvD7/czNT6OIUkoa8irmE2SzJVB11aV11xo
ElV0MzMxiKbrqKpOoaxjt1VfSaYUcwwNjYAoEgzNYZXFVeWVikeZmImiFzNrqA+d0aFBNMlG
LDR7pT5WzOkmEE1kaHVZGA/NEo2nVj117vXWYZElJgcvkddXtyBbV/LEI1FSqSSXxqZxWVfX
NAanZ0AtEw6vTcZMJk02m+P0yZO4vatbW2+320mEomza1spg/xgTszEs4so5un1+tHIRb50f
WRLoP38K0XH9/Ox2O0o+QySaJJGYW1NeszMzlEulVefVEHCRKyhk0lmy6Sgnzg7i86ysyLLN
id/jIJbM4bIIzE6PkcxcPxCDx+vFKstrrA+BQCCAVlhaH++7AXgcFibiWZoD9XgcVvRVOlyT
kxMoqk5L1zaE0uo+0aMqGioGimLQ3VZ/3WgJC9TX16OrJWyetckoyxYkSWT37p3E48lVpNCJ
hmYoGQZDfRO0dLbS7HdS0lbOMBWPMhOKMjExjqobbN65m1witmKahbxm5xJglNGwrikvf309
5XJ5lXlBKBQlHg8jW+xIko1d2zYQT+VWTJOPh5hJFnBaBeLZAvWN7djk60cPCU5NUVZVJtdU
HxpjoxOUVW1JfdT6ADXuae6E3Y41arxv1Aygxj1NzQBq3NPUwjXfRvKxCQ6eneD++3eRDM3S
1NGBTRbxeG0c3HeExrZWNm3qYmo6hFNSqWtoZmJyFqtVornRjy65yMcHOHBkho8/tQ2rqw5B
N3DUBXj7xZ/hamylvb6OQJ0XyRNg3759fPsbX7/dxf5AUTOA20g5l8Thq+fCyXfJJVOMRRKU
NZGvfeYRyIaIxazsP3aJX//VL9B7+hx9pw9RdjRht/ro6e+ju3s7D+7tYuu0lfHRMWIFgbnp
cX7rO98BYENLHX3nzpHTvNiaArS33ngArLuN2ijQbWZsqB9vYxux2WmcHjeJrMLeHZtIRKOI
Vgc6EI7MVVoARVERRRlVL6PqMq2NHtKpEqlEGKvDgUW2YnXXoRVz+LwuhgcG8NQ1YrdLTIUT
7Nm++XYX+QNFzQBq3NPUOsE17mlqBlDjnqZmADXuaWoGUOOepmYANe5pagZQ456mZgD3GNrQ
qxhq9U9F6RPvYlRZkazPnF3x3vrMMbSxUwAYWTNsuzZxtOr1RimO1v8LtPGT15G6OkZ2HD08
vu77ve87wmp8cDAKUxixaYyygEAKffo8Ri6FYBHQB94AyY2RHAKbF0NRMTLjoJXRh94CWwPo
ZRAU9ME3wdaAYHehx/vRx44juAJoF36K4N+C6K1DPfxfQJchP4ORHAPBBaUI+ugRhLpuBElC
u/Qc0rZfQnD7QM+jX34NDCtGdhrczRiRPgRXI/pcL/roYQRPJ0boNPr0GQR3J0a8B338ENha
EH1NS+8n6OgDr4LowshOoc+eBVUEI4s+dADBuxEjMVRrAe4ljOlTGMUCRvgsRmoEIfAARuIy
qAWEwFb0+be14KhHHz+EERnESI9jKGUoFzAifRjJscpvAH3qPOKWJ9DHziG23I/U9SiILsSm
3UhbngJBQOz+JHrwGNrQ2wguB/rYaVMgyQnFadRjfwVqEcHXjT51DPQ4+tQpjKyZB7qO4G9C
Hz+LnphC7NiBHupBnxlG6n7ySgEX3c+YeAdsLegjb2PMDSFueAY9dAZt8E0EXxPayHvoE0dq
BnAvYZQE5Ie+heBygg5YXQiChBEbRI+PmlGJAUQHgqUIjk6wuhFkESMTMs9d9VuQDLS+18Df
tTQz2UAbPgyiDUG2IwgGgqcRI51ACLSb2Xh8aGMnwO7DSAyjx0ZB1xBbn0QffAWx0/xemhE6
j5GeBQwEiwskCxgyqHPoi9ydxfcTvJ0YqVGEwGYQLGC1IwgigrcFPR5EbOhGcLXWlkLUWAY1
jXr+BaQHfgNBvvUfN9SjFzDiMaTtH3/f86oZQI17mpoLVOOe5qYYwGq+lVujxgeRm2IAhULh
ZtymRo1bTs0FqnFPUzOAGvc0NQOocU+zZFN8JpNZ103y+fxNEaZGjVvNEgPweDzrvtGNpK2x
PgzDQFgh0nON61PVBQoHhzl7tp/aAOcHl5+++BpnL/bcbjHuaKoaQCaT4Nypi1RfOFvjdpPN
58hkV47AXGNlqhqArsls3blh1bHya9x69NXGca9RlaoGkM3lcbtdNQP4AKPrtfb5RqlqAAF/
Hal0tsrnrGt8EKgZwI1TNTbo3FycfDJtdoILac5c6APg/oefwLG6LxbVeJ/Rawt5b5iqLUBr
WwuehkasgMXhxW0TycUi5K7/BZsat4jFLcDx0+colkq3UZo7k6oGkMvmKGazLOi7xSKjynac
t35/RI15DMMgkUxVfi98oDyeSPLWwUOEItHbKN2dSVUDUFUVb52v0gm22uykYmHUWqt72wjO
hPjvf/P3ld8LBvDaOwcBakOi66CqAThdziW/Hd4AHS2N5FMxLo+Mk8lkicfj77uANa6gaRra
IrdH1w0Mw0DTzHb63MXe2yXaHcuyneB8Msrk7Bxg9naLsTGOnx5i85btUM6Bpt0g320AACAA
SURBVBGenQSLl7q6OnRdr22KuQUoilL5XxAEdF1H08xWAEwDqT2HtXGdL8TMO0CSA4/TzuzE
EM0PPowSDxNoa0EpFhBEEVEUkeXax2bebxa8T0EQkGUZw9BBoLIeSDeM2nNYI8vWlrOukdaG
cU6dmcEA7HUtPLBLY3RiCqevnr2N9bdYzBpwZdRH03VkrrhACxSKRTRNQ5JqIxWrpWofwBto
o6XRVfmtayqiJNdmhhehaTqp9PqWkK8vP9PXXzCEhU7wgg3EE0kmgzO3TJ67gaoGEBweQPLU
VRQ+FA5x6vDb5GouZoVL/Zf5qx/9+Jblp8z795qmc+DIcRRVNQ1gUcd4wUhqrI6qBlDX4KWU
KKABpXSUho17+OgnvkCd/RZK9wFHURQKxeItyWtqZpaX3ngbgF+89iaHjpkR0QzDWDIhls5m
GRmfuCUy3Sz2vXuYkbErMuu6TmQu9r7ll0yl+a9/9UPKZWWFYVCnh3QphwUoxCY5cfYSqWyO
2gvmCoIg3pIVmZG5GLnclV13oxNTlb8Nw0A3rhjAmQs9vPTGOxw+cZqzd8iw6Oj4JMHZUOX3
+FSQZ/9+7S3r+GSQ8vxI2Uok02niyRTFUqn6KNB0MExHeyM64OnYzRc22LF8APpWC+Pei0c7
JqamGRmfZHwqyD/71W/cMlkWKx7A3//kBXbv2MaOrVtwOq40laaSGlzs6SeeTPLIA/fh815/
B52maQwMj/L8K29Uvd5sAa4YoaIoqKrKyPgEToeDh+7bvc7S3TquHrp96Y231+XK/cPzL/LV
L3yGXdu2rHjdQn0NjIxWbwGa6n2E5pIASJabr/znLvbSPzi85nRnL/bygx8/X/mdy+X54XPP
c/jEKYIzs5XjqXSG9zvq48JD+smLr2IYBmOTQV55az9vHTy05LozFy7xZ3/xl7z81jscOXmG
5195fVWu0/DYBD97+XUMwyCZSi97TbFUXuIClRWFYqmEruv0Dw6TyWZvoIQ3h0QyRTyRrHpe
UdVKXWqaRjpjynz6/KXKNaqqVo5XQ9M09FUYTiQ6B8Db7x6ubgBzqTBTveM3dUukruuVh3Xi
7Hle2bef3Co21C9cUy4rDI2MEY7OEYsngCsdQwBRFJmLJ5gJhfnzZ3/AbDhyE6VfSjKVrjy0
y0Mj/OL1fZVzw6Pj/MPzL3Kx7zJguiyLm+bgTIiZUIREMsX5nj5S6cwS411gNWt7+geGiMbi
iKL5KHP5/BKDyebynDp3kYng9PoLO8/CC6VQLDE9G75m8V2pXGYmFL4m3TuHjvL2e0eq3ldR
1EorsPjFMDQ6Rnx+7dOpcxd57hcvE43FSWeylMplei8PEopE+et/eK7S71FV85nk8tcGaxsa
HeelN/ZV9ElR1OU/kJGbm0U1nGTQ2L1jy3Vjp5TLZcqKwvRMiLl4HEVRKRZLOJ2ORdcovPDK
m+x79wjZbJbxqSDFYolsNsf2Ld30Dw7TUB8gny8gCHCpb4CSUubvnnuBQ8dP4na5+Lvnnica
j2MYBjarlU0bO5mLxzl3qa+Sz9T0DMdOn0XTdHovD1Hn9RDw+1EUlaOnzhCZi6Fp2qpckOUI
R+dQNZU/f/YH2Gw25uYNceGtAqZRJpIpgjMh0pkMgyOjlQezwJauDZy50MOxU2fJ5nIcP3OO
YrGEv87HhZ5+EqkUE8Fp5mLmchN/nY9isYTDbl/iMiy0cU89/giTwZmKkiqKec1cPMGZC5ew
WizUB+pIpTO8/OY7OOw2PG43r7z1Dpu7NiBJEpqm8e7RE2xob6sY1MI9UukMP3vpdSRRZGIq
yPOvvMHZS720NjXyj8+/iMNh5+CRE+w/fIz7du3AbreRzeU5efY8AyOjuJwO9uzcTs/lQZ77
xSts2tDJP73wMqpqunk+r5eDR45zoecy+flIg/FEEk3TuNh3GVEUCUXmmJ4Nc+bCJd5+9wh9
A0OMjk8RmYtxqW+gImsoEuUXr71FZ3srDoed8alpxqemmZia5mJfP+lMFp/XQy6fXz46dGp6
hMM946jFEp/7yuexLjqXiM4yGU7R3tpEuVSkra2NTCbDsz96jux8R83ldGKzWnnsofvoHxrh
i5/6OG8ePMTw6Pg1CmWzWXlo7x6OnT5La3MjpbJC98ZOLg+NIAhCZYGX2+Ws3B/A5/WwZ+d2
pmdDjE8Gq6irmU4QRPKFApqmYbHIaJrOlk0bSabSPPXEo0wGp4klkjTV1xPw+5gNR4knkzy4
dzfnLvWxe/tWZFnC6XDw05dexeV0LrvwrLO9jVgigVJWlrRMAJIksaG9lbF5Wbd2dzG0TH1s
2bSRbC5POpMhXzDfhh1tLfzOt7/BXCyOy+VkJhThzIVLDAyPVtL91q98nZffeod4IonVaqFc
NlscQRAqRmGRZRx2O+lsFofdhs1mI5lKY7fbcLtcNDfW03t5iPt27eCBPbsYm5xibDJIPJnE
7/ORSqcplRVamhqYmjZbLIfdTqFYRJalipE7HXbqfF5mQldaYIsss2PbZgqFIsNjE9QH/JVW
fCVkSULVNOx2G8ViCZvNSqlUXnLN4jIuhyiK12we2tjZzsTUdPXw6LqmgSAiikunvoLBKawG
zBUyWGQPm7vayWQy/Jdnf3jdwricDgRBwGq1YugGZUXBMPTKg15WeEEAYen+V5vVQql8bW9/
oaCyJNHdtYHBkbHrynQz6Gxrpamxnkfu30t9wM/x0+c4cOQ4hmEgiSIN9X5+59vf4NylXt5+
7wh2m31Vrp8gCLicTpoaAnzrq19aMss7F4vz7I+eo7mxAYss82u//BWOnzlPLpfjQ48+zF/+
8B/n6/fWLd/dvX0r/UPD14yM2axWFFW9RgnbWpqZCYVpbW5kNhzFYpFRFBWf14MsSZQVhUw2
x6YNHZUXxwKSJNHa1Eidz8vmTRt55a39bOvuwuVyMjg8Rnq+72O32Za4ah6Xi0wux4ceeYiN
nW1r/z5AIZNgMpKirakBRSnjDwTIZjKc7+lnx7YtRKJzKKqK0+FAVVVam5sYGh1jc9dG/HU+
DCCbzZHN59E0jTqvl1AkSjKdpq25mYDfR//gMG6XC6/HjcNup1gskc5m0HUDp8NBnc9MIwgC
ZUXBIstIksSmDR3zb3kL4egc4Ygpi7/OSzyRwud1Y+gGgiiSzmRwOZ0oqkq5rJDJZhEEgTqf
l2wuj4DZoWysD5DJ5tB1nabGBnL5PLIk46/zUigWsVmtOB0OAv66JfWUTKXpHxrh/t07KyNC
pVKZWCJBoK6O0YlJAv46srkcrc1N5PMFiqUys+EIiqrgdrnYu3O76R9rKi6n85pnkS8UsNts
5hqgq5Y/9A0M4fN6SaRSiKKI1+2iVFaw22woqkIqnSGZSuP1uLHIFrZ0byQaixOLJygUi2Y9
CQJ7d+0gnckwF0+YBiiKOBwO2luasVhkQpE56nweMtkcbS3NFIslZiNm/0ZRVIqlEp3trXRv
3MBs2Dxe76+juakRgKOnznDfrp2E55/ngh44nQ6zIz80zEN792CzWQnOzJLO5qj31yGJIm63
yyyPojAbjrKhow2AdCZLIplCNwwa6wPEE0ka6v30DQyxfctmwtE5mhoCeD2elQ1AKRYR7Xau
NwCUyWRqgbFq3JGs2L8tZLK1wFg17mpWNADLKt7+NWrcyVQPjTg9waXey7XIcDXuaqqHRkxE
6b88TG3pT427maprgdLFPPl4prIcWivlGRjoQ5V8lEsFWlsbKRUKdHd33yJRa9S4+Sw7ChQZ
HcfV3YVcKmGz2QDQSjmCc1lEtYChGeTVIpLsYnNXB5lMBpfLdc3Na9xcjPQ0+tHvI332z263
KHcNy7YAxWyCnuMhnFh4+ImHsQC6AcVskrb2DjLZPJv87WiaWtsTfAvRc2GMzHSlrrXBNxD8
mxAbt99mye5cltXaDfc9yIarjlnsLrZvNyva415421upceswSgtBsQxAQJ84jFjKQON2MAyo
fSxjzVTtBF849TY//MvnqX386MbRhvehJ6euf+H1UOen9Be8Vv3KLE3557+HnryzdoJ9EKhq
AHark7lCnFoc3BtH638JY+r4+tMPvoEe7kE793cAZjgUAE298ruUhtLtX/t/qzF07coLYR1U
/z5AQedjH3m8FgXiZqCuP2itoWtoZ/4GffZ85Zg+eRwjNYWx0AJo5sJA9ch/Rk9O3pCodwpG
Kojy5r9DO/YXaH2/WPd9qvZc7TYbmZJS+z7AzUAtgbTO/pIxPxOjX5mR0U4/i2b1QDEJhg75
+Q3kpTQUElB3dQ/u9mCoJQTZtvrrCwmM6GXEDR+6/rXFJEZ8FGQ7xtQsQsM2xOa1b/+s2gJY
LBaSiUTNAK7C0JaujjIW+eHq8f+GHh+9Ogno5fV3UBfuX1oUf0gpQC4CWhnD0FHP/mCxgOvL
ZwWMbAQjVX3PxXLoyQmUF75juiirTTNxFPXkX5p5ZkIY5RWC/S66r5EYQx/dj6EW0YbfXpOc
KwbHtbvdlbVAulJkcGScRHSWCz2XmYvFmZlZPgiTkY1gFFYOnHujvtuNYuSi1SvLMJYo9mKU
n38Hrffn6JF+9KkTKK/9QeWcPvYuRmppZ1efPG4+rHUopqFrlQetj79X7SLQFm0QuYGvxhi6
inrxuWvKrvW/hHr2+vs9llDKglaquGerYj5fPTGO8tofoF16bgVhr2oZdQ0jNoJ26v/DKK++
L1TVBQqHo5TTOcqAAxAtdjxOO7mSQqvPRSQWwiJ7Kvt8F2/T0089i+BqQnjod6qX9cAfQTGF
8Ph3EQLVd/HrB/4I8f5fgyrXGHMDEL6EsPuXr1/axekmj2Nceg6j65lrz40ewBjbj/iJ/3ht
QiWPdvGfoHkvQtvDkI2YZc+ae2F1XcdQVYzUJEa0H3rNDfy6pmIsE7jWOP0sbPoYQv1V5Sum
0F//VwhP/S8rl0NTrwqMpaCrKsbUMZCdCK33V0+bnETwdaBPHEEIdCOoBfTe56H9UfBdcaMM
TcHQyqsOvGuEezBCF015ygUQVjdHpCcmAAEtOwe6ij59FvX+31w+D1WpyAaga0plUECdOAb1
2xG8bdfNs2oLUF9fh+xwVSxEK+WZm4titVhJlDU6WzdQX+eqTISJ0V4kQ0GWZQRdQdDLyLJc
9Z9QzkE2BL0/QxKpeh1zAwjzkz+yLCOJYBz5v5CULLIsI0b7IHhiSRoJFWH8AJKgV72vKIow
H0z2mnNaEZIT5t8zpxDTk5W8FxB0df4eZh5iKTFfofO/Z84gDO+rdIBFQEyOIRXjS/IyJo8i
JoavkUHSS6CWEMYOrPwEC3NQvuIeScwHyB19B2HarBfJUKDvZ3DhR4jRHiStiCSJGG//e/SX
/jmc+1uE4PHKPmBJkq7IIkkI6AiCgBg6izjXj1RKIs6erf5sx/bD4CtmufPhFfWgkmbiPZg8
bLqKffNRP3Rlvt4FJEm86hmb3oOgleafh4I4v3JNSE5gvPlvkMrppc81OWYekyTE6ZPmc61W
r7lcHqfzSmwbyeZk7969ADQ1X3u9evCPERq2Y/nU/FvzOiMfC82sEbqIfvllxK6PIDiXCbor
WaCURY/0ofW/BKUMRmwIIzmB4DB3YRm5KNrll5F2fAkA7dJP0S+/jD70JvKn/xPCog6okZpC
PfH/Im78MGBg6BrG1An01CTSnm8iiCKgm82xYaD1voDQuB0x0L3E70Qtog28euW+BdMA9Okz
SJs/YR4UBNDnXQBDQ7vwD6CWkJ/+QwRnwHQBjWouy7x7eB0Xwpg6sfR3MYke6ZsvaxBDyaOP
H0LvfQGcDVBIoL/7J4hdT5tuxLzxGMGTUGktzP6KNvQW+sQRjLkBhMYdaAOvASA270Eb2Y+1
87HlZVrsn8dHoXHHstepR/8ccdtnERu2YUTmg3ipRYz4iPl3KYs2fgjt4nNmfQHSfd8yW8t5
F8iYd/+MbBhDmd9aq8xHhJg3DiMVRBt8HSMxgdj2AELL/ahHvw+eturfB4ilC7DGWQAjFcTI
x83OWTGFHhtCsHoQPC3XXqxfebD69Bm0Cz/G8rW/QrCZO8v0yaMg2UzfLj6CUUpjzJy9klc5
Y/rq8z6wdumnCJ5WsxIUc/rOSE5CZhbqNpr3jA2jX37VNKDAZsBAPfi/Y4TNyhd8GxBEET14
2kxvaBhqCSN0EfXcj5B2f/VK/sUUFM2ZWW3s3cpQnFEZrjQwFnVcDUM3jSQziz7+HtKuX0Ib
eRt0BSMzgz57AcHXCY46jOApjIUyKGv76os+9i7GxR8j+Lsw4sNoJ/8SffKYeVItoE+ZfxuZ
pWFYjNQUqKYCGYUkenISreenpgEuMlIj0ofhrIdiwkzjbECwmNE/9Ikj6FPHK+7gQj2oF38M
moL84G8slXXqOEYhju7bgB4dmD+4yM3SFbTTfw1KHiNnbrBX9/8HhKZdIM9HHFl40WZm0Qdf
N3NUF/aYz4eNjw2hD5tha4yWPQgLfabMTPXw6Lt36HjqG9dmAkoO5cXfr/xU3/r3IFmxfO7P
TOXUyqj7/yPSA7++5M1mPgwD7dzfIe38Ctg8aJd+hpGdBUM3K/Vq8nFzhnXex0Ytor73p/NK
5L8i0pHvIz/0W4itD6BPn0afNOPTGNHLpgGlryiCdvYHCN52s18B6KMHTTcNMELnYdeXr+S/
qJOvHf9vV47rKnpizBzBKC0KZpWPm/8w36zipmegkKzko4d6oJRGfvJfol38Mcb8pJYR7lm5
zhewuECSMXJR8y2aNuMAVZQfzI+bVCrm2rg52oV/BEB9708Qt3+uYuCV68VF6qJr6PFRtH3/
G/LH/lfE+i1oYwcxZi9cc08hsBkjMY7e/gj69Kn55y2ArmIkxuafRZWWULlqLYKhL62TRR3e
hedmTJ9eODIvxCJdC55CX2T8VfcEhycHef3gaR574kPs2rZpeeHmyWQy2F753arnpce/i+Df
iLr/P5gPweo2LXehFRAtS1oEvO3mdcXq0cQQJLC6lipZNRwBpM0fR48OYIQvXXVSoFJRomS2
OguVvlguTxvS7q+hHf+v181OqNuIkZlZ0X2RHvgNtMsvX1NG6YFfnz++SPkkG1gcK9aH0LQL
lAJG4uZEwhC7nkYfXxrhDsHs8wjNe0wldDVCLorQsB0h0F15A1eVsfWBRS3kLcDZgLTjC6Ap
FeO+RqZqBjA+3MPQWIKPfuLDWMWVQ2NdzwCEtocgt/ax5A8UFhes0R1Z+X7Oa99uVRCadiHt
/SbqgT9Gevi3EZwNqO/+H+ZJqxvKWeRP/BHa+b/HiK093OSyefo6rxnSXRHJVvG5q94zsPmK
f78WWToew4gOQCm1/AXOBsjPLX/O4kRwNWJcvU5qvv6rarZmiMSnZzCuUn5dLTEdilAqlSkU
rmpGhWVuJ9sxQhevVX53M0LdRsTNHzc7uoDQ8SjCouE3wduOUL8V7EtDjlwXqxvcy/Q7boSr
lV9eFCfeaq6OXW4GU/C2I258yvwhLnIoV6n8C4hNu5A/858Quz+G2PYg0ofN+QfB3YLg7UBo
2AqChLjhSdPFXAsWB0Jd15JDC8ov+DeZynI9rqP8wOqV391sDjEL5iyUtPebWD77J6YsYLbU
C30Aqwvp/l+9kvZqHVTy1yo/IHY+jrjzy8sbQGxsiEJRR/S6rpkJnp6eRcvnGJsYYSa8NIZ7
pRJFGaFpF0LH44ibP1np2AjNexB3fAk8bQgOP8g2BEd9RenFhm3In/tTkGwIvk7kT/4Rlk//
MULjdoT5jqy4/YuIO7+yUvUhP/5dxJa9Vw5Y3WbFiDJC5xMI7Y9Uf6iW+aXeCwruCICndf7v
K30Lyxe/j/To75nlatyFUL8VcceXEJp2m67BvLJLj3wH6Yl/gfTgbyLt/YaZr6vR7DzOj46I
Gz+M9NDvIH/k3y31sx0BcDUizBuzWLcRYf78wsCCuOFDiDu/jCDKSA/9JtJDv42088umy7R4
JZenzZRftJiKtMgYBWcjls/9KUJg81IjxXTJxG2fM+sQYH5pw+IXlXmhFem+byO0PnDNsg/B
twFx99evqWpxy6fN8wtzIDav+dvhR7C6EJp2YvnlHyDWbUBwBhA8beBpwfK1v0Fo2IbQ8Rhi
+6PzI3dg+cr/g+WLf27qWDUWXoyyHWnnV5bvBLsDXkJjl/F6Pdes+LdIAtOxNC2tjRTmA0bp
uo7w5B9gqEWMwdcRH/5dhEA3mqaaY842N4ZowWh9GNxNCK0PQz4K06fQrF4Ehx+x+2OoGz+G
pOmIG57A6HwKTXKCqqI//PtIFiskp9A87UgiiIEt6JqCWE6jD72J2HIfRtujCPk5lLrNyLkI
YsdjGM4GhL3fwsjH0B31iNJ8kWfPI+SjGI070a0+hHf/CLFxJ0bzAwiJYdj6ORh5G7o/ARjo
r/7PCB/6VwjpIHp6Gs3iha6PgWgHZwChYTuKpiF99N8jKHn0cg7x8ovo9dvRFBVpy2ehnMXw
dSHLVgxRRrMFEDNBaN6DOh/1Tbjv1zD6f4609TMYWz6DhgwWK+p8BOWFyHCaswXpqX+D0foQ
mqaZk2y+TeY1qmqOaDXvwfC0I8xdxuh6xhxhEwQ0qw8xOwtn/7ryYlBVFf2Z7yGP78coZ9Hq
NiNnptB9G9H825C2fh7mLqOrJUS1AJ1PYoy8gyToGI4AWvODGFYHwpbPohdTSP0voM+cM90W
Tyvs+jogIlocIIroVi/Ub0HytaO72+Hkf0fa+WX06TMINg9G9yfNUSDBCvNll+s2IEoyZV00
W0DRDHNp5EKIm56hLLmRrBLs/TaGdyNC708w6rcjRHsRHv8XGMe+j/DYdxHCFxD8XZSxrj0y
3HIsCYy1lo0ZC9fe6GaOaunXI8t6z99MbkZeq7nHzar/le6/wGplufrvla5bTf6Ly7dM2iUG
kMms74Nv+Xx+STThGjXuFJZorcfjWdc/p9OJzVCIZ/JEZiN4AwHEYp5CPs/oxAyeQIBAwEtk
Nkw+E0fBRiAQIJ/LMReeJZnKEggEiEXDlBSNTDpDIBAgl0oyPT1NZC5BIBDAZZPJF4vMDI9j
CwSwqEWCMzOMT8xW8pgJzjA0OITD7SUQCJCYizAdDJKYzyOfzROfC5PK5AkEAmRTCdK5QiVP
i1IgkkyRi6exVynH3MwEw8Pj6KKDQCDAbHCKbC6H1+dfNo98LkcmGSccjREIBK6pK6taZCo4
zdhKdXXVPePREMHBIUoW87yITrFYZHJqhkAggJZOEcvlMARp2TwDAQ8zExPMzAYpqhYCgQDJ
WJRisUA6V1w2DyWfIpmZY2x8+XI4LRCKxhkaHKEuECAQsDMxMk2hpBIIBJatq+s986uf8dU6
sNzzUEsFisUioXBsWT1bXI6btpPd6fWix4JIDgdWScLf0szc4BCi1YpNkhAQcTislMoqAY8T
SZKwygJ52UqgoQFJkqhvbMYmQ1xzIEkSHn8At68ORdORJAm73Uqd1IJTELFLEobLRVu7l3w2
gUWSkJDYvKmdgfEQbofZWXM47Eg2J3aHa36NC7h9DdisFiRJwucPIIsCM7EMkiThqvPS7nMS
HhnAKkm4WpqZvnQJV13zfDkEbA4nm1obsEgikiTR0tZBU1MDsXiS+voAdruMotlxucxyBuo8
TASzeOrqkSQJp9eDkI6CxYJVkhB9PixzKax2u/l7mbqy22VkWwMCBpIksXXbNnrOXsLv9SCJ
ArLFRntjM7JkBgp2uL04fR70fBEkCbvLiZhNYne7sUoSAtDa0YaEgW63m2nsNnQDnE7nsnm0
bdzM6FAPbe0dy5bD6mugUzOYlSQskgRYaOtsx+u1UixruBxWmlvbcLndlEtFbB43/kADNotA
XLEv/8ydTjZ2Bcim41gkCWFeB7ySjFWSkADZYmP7zg2A+TwsNgcBrxuL1dQjqwQ5yYrPX4ck
SbRt3ExoZgy5yX3db1+smmxsjngyRz6boQwkZ6bQBQu6pmNOB5VIxGIUigXCYXPyKvT/t3dm
MXIkZ37/5V2ZdVf1fZIcknNwOBppNBrN6lyvD8AQFrtrr6QFZAN7WAJkwK9+2Bf7xY8LPwmw
nwysL9hrYCEtJFvS7np1jVYHNSNyOE022XdXV3VX133l7YfMLGZXZ5OcFWdEWvwDje4vOzIi
MiK+iO+KiOohacMgOoH9+OiYvUqNYT8QxRqHVURF5TC8KcUcjVh75wZ3dvaQgEGrwebdW9Tq
3fAMU4s7GxVWpjQ2K4HNuNPrI4oSg05AH9YOcR0rUKqB48MajiBjDgKPYn33kEZtm4YVeCY7
h1W6pojVbRI40AdYjkpt6y7NTmD6Gw66VA6q7FcCr3Gz1cF1bNrNwPNbOThCkSS67cCR1anV
aLWa9PsjTGDQOiZVnMUfRmexnm6r0WiEgEf9OIg5un17EzmdYuf2+rgO1UqFvUoYhuD2qdV7
7G5t4wLHezU8RUKRpfC0P5fDyja3NysMh8F3tHt9XA96Yb0ny7h76xatnkvj+CDxO6q312m0
27S6faIQwMPaAcP2IYfNYdj+VVzHYie8X+C4fsj6xh7mMLnPm9VjWscV9msNHMAcDKgfH7Kz
tRO21ZBG06HXaaOl5LCMA37+85s0m4GVstHuoOsG7XrgK6hW9vBIUT+qJN8Q825hWRa5YhHb
9ZmfnSaj6xiFEv1WnVxxmlI2DcgUSmUWZ0uIqo6uyWSyOWZmZpAEAUmW0FMKsqxRnp5GUxVy
2TR7u3vMLiyT1jUUzaCY0ZBSWYq5DKlsFtf1yGWzlPNZQMJzR1i+wsJcOTxCO0tGE/CUNNm0
TiabI5vW0fQ0kiicKiNdzNNt95hfWiCb0tDSBqZls7KyjKGpCCh4zohMocT0bBlZFNA0DVVN
US4XURQFQ5M4bvU4f/EyiiSSz6XxRZF8roBhpFCNFNNzy6R1maxhoOgGg06LbLFEIRO0VTaX
pVwskCnkUWURSZYpladIGyk0TUNTRFQ9TalURNNUFFkjX8phpNLoegotjU0h0wAAGjVJREFU
nWXYaaIYGcr5HLKqUp6ZJp1KBdGXCFiWyzOXLmIYGookkk6n0TUFWU+T1lPomoQnqszNzqCq
CqmUiofI0tIiqqKgpXWm5pbIGQqGYZAp5rFMl7mZMoauIyCBO6I1hPOr84gCKLJArzdkfnEZ
VQ4iTQvFEsXy1L0+39tnbmEJI+yPeJ6qpqEpKfKlPIauIyKQyWTJFfLomoogCAi+S75YJl8o
oqc0dN2gmDfwpBSZtI4iqyiqyvT01KNbAVr7OxwdVrm9sY8FtCtb2PoU7ep+OHO67O/uUq3X
qFWCGaZRP6RSqbAWXpa3v7vFnRvv0A0vWNja3GJmfoHKXrDPtV3ZpNJx6RxWsYBOdQ9bTtM+
OgzLMKlVm0iKw/bdIHhqZ3ub3cohnUZA7+/tsbO7x8ad9cQyurVdLDVD5e5GUEZtH1JZttfv
hCuZRWVni739XXb3gxn9zvo6rmOyuRPE39zd3GF5cY6NjWB3WOOwSvVwj43NoA6Hm3tUdu+y
vhW0zeHdLYaCgG2aYUCvxd07Oww6xxwd98Lv2GJ7e4dquMrs7O6wu7tHZT/YlNSqH3D9xpvc
3QhWgOr6BpZtcnBYxwRaB1V2N+5w7fraeCXb32txWKuNL67YuHMHz/fGs+/G5ja5tMbW7n7Y
P7vk8jnu3AkcWma/x/7BATu37jAEzG6TvuOy887t8DQRi+phm5LusnMQrMDbWzv4gGUGAWu7
O3sMh4PxfWs727sMhiMqe4HjdDLPxs4Wb7/zNmt3d8P+8Nna2qJX32HrIFgta0d1+v0B9WrY
Vlt3uX7zDq3jo5DewHJc7t7vlsh3i8LSKqurq0xnNEQgOzVD82CXdC4fumNEZElidn6JUiFw
QsmKQqE4xdzMFABTM3PMry6TChfpfNagdnTM0krgdFEzeQatQ6YWF1ETaBDJ5PKUMiXmloLw
WVX0kTWdcxcuJtIz00Xu3L6NogcOsOz0LM3KJn1PQE2gQQNJQxFhdjYffHvOYG1tjanZ+UQ6
X54iJakUyoGpePbCCo16i3IpjwYU5mbQAFlVww5RWVycZujL5PVgWT9/4SKrS3OIoeh2/pnL
vPKhD5BJB205u3yeZ1bOMTUdlnHxAkYqy4WFacQEGjReeOk5VlbmsUfBUCrlM7z15lvMzC8l
0vNzU9y4/nOMXOAQTGWz2IMBhfl59AQaVFTJZn2nweJc4OSanpkOYvvD75ikS8UsSDKlchAa
rxk6+CLnnjmPDOSmy0zNrXBuYSrcrXi6jFKxiCI4KOmgf0qlMnOzU+SKwZiYniqwefcuWjr3
6Bhg1K7T6I7oNZqYQOewxvzqKsf7B6E8aGE7Ajubd2i0gvmh3x/SblQ5qAWcWT9uoRsKu5vh
jN93mMnr4zuhWgfHzCwvjGfKSRpMHNPjqNEeX+3k+hIpWWQwHCTSR/V2sKPNDGTUTq2G43j4
nh98xwQNJq49wnI8jo6CGafTHbC8skrjqJZI7+/tkcmX6XeDla9br2FMzdFvNLAAa9BhYENt
by+c1Vyq1UNkyeXwMChjd3uT6mGdfr8/piuVAxqt4P/bG+u0eib1sEyzc8Rx36S6tYuZQIPI
1sZtKpVtqqGe0emPmJ5bpFndTaQPag2KpSl8M6hD+2Cf43Yf0xrhJNBgMbJFlueyHIRltFst
BEFgL5zhJ+lGq8PsVIl6KK93Dg9RdZXba3dwgF6jiaKKbK9vjcfVZBmN42NERWM46I5pQRBo
t4NV6KjZp1gsILr3uSj73ULW0uiKgz83iwG4pSkah21KSwsEc5SCqvpIokFpOeDuTFrHQ2Ru
fj6RLuTTDG2PSI0uLZTZO+6B5yIk0KCjpjwEzyF6ktJVEMXxrYmTdHmqiJbJ4npB+nSpzKwj
4TkOCiBO0KBQmplDFKA4FYQHXLh4kZHpEF1RO0kvr55nMBhi5YIyM9MLLPb6dDwbL4EGgfMX
LhCwXDDPrayew3E9XNdPpOcXlzEtG2cqKEPNTrEij2iLHjKgTNBJZSwvL+H4It1ON5FePb9K
r2/SCens3ArPG10GzTZ+Ag0SuaxOfm6BUTd4ki/kUVSDcl5JpHO5PKYnMT8bXKGUyhU4agy4
+OwzyIA8QYNELp3C9ERKmSB8pVDI0+sPKeTzyXQuQ2cwRFK1R7cC2KMRju9hDod4cXo0DDvV
Yzi08HwHcxR00mg4xHO98SVmk7Tj2HiuxzC889W1HdxYGZM0+FiWjec7jIYB09iWFeQZ3j87
SY9GZjC7h2XaoxGu72Ob5vg74jR4jEYWCN64jKOjOrIsjeXYSfr46AhBlnHDPbXOoEV75OG7
Ln4CHeRxBPi4rhejiZVxkj4+OsLj3q3rzqBFsx/uD06gk8poNFtIojDOc5I+PjpGUuQTZfQs
TpQRp8FHM/L0mzWGZiixCzKSYNNs9xJpy3YpZlNUj47DPrcolQrs7uyHfX6SBpdUJk1OT9Hr
hTvABIVSIY8ZrvKTtGl75LN5JLxHEwrhOM7Tw3Gf4onEI2GAp3iKJxVPA3ie4lcaTxngKX6l
8VRwf4pHguPtNa5tN3npuWeoHTVYWphFFkVyfoNv/LzDyrTO+ZU5KkcdMLvMzM6zVztEkSSm
C2kGnormDfjaN/+a3/j1TyOqKdIKCEqGN/7m63hKiefPz1GaKtEYSax/71u89Ju/x1zqwXW7
H36pDOAd30LInkdQH7+LNrzOPmJuEX9YB7mAoLx/TRWV/SSh32qTL2f4wbe/Tac/4vjKCyAq
/PpzJRrbN8iwxLXbFf7pJ1b50a0eb/zl/yR/6Tk0XWDteoXy0iV+7dUPcunSJap7G2wfdvBb
Nf7B5/8AgJXVZTY2bnD7Zp+tpsbLFx9N+5xQgq03/gPK61/CeesriJe/jKSffsE9+D5ozyGV
yuE7fwLpyygvfJzBn/5z9C98dXJXXTLMCqMf/jna63+I4O5jvn0D7cO/+eD37gPv+AbmG18B
bRX1I19EyhcT05l/9ceQmgNjFe3le2U6m99FPv+JIM0Pv4L20S/jbn4VP/dJ5PLpfcnuwfex
b/0tgqqhvPovH+67HwJR2U8WfNbfucHU3BIHlSo5AwbSDJcXDGr1DrqeAkHgsHFvBbB9EVHy
EawBjSFcWJ6n3e4w6jWxpRRZTcaXdARs8rk8m3fvkC9kEaQU+7u7XL7yIuovKMRPTGsDrDe+
glf7Meq5Y0Y/+Ar4Kuprv4d94y/wPQ1RrOL2vof6oc8HZzEqU+C08XZ/iHTuU+B1Md/4z3j9
HtqLH8W8+VOwWqT+4b/B79zEuvYXgIS8uITX3sa3rGjvM+YP/gRBSeMLZQSxiT+ykZZewtn4
WxB15LkyzlEHv3UXQRWQr34R5+Z/AddD/fQfI5ZfRLn8Kch9ElEZYr7x3/AdEWVpBeeohjj3
KsrKi6BkkRY/gLO/jnP3G7i7P0W8+Fm86k0E1cW+fQ0vdgSJc/O/Y5t95JkS4vnfwbn5Z2iv
/SHO5ptor38B69qfgdfDeuNPcTst1Bc+hOedw6t+F/Ujf4T7zn/C7YA/6iAvruJUNxCLV8Dc
wh/2EaY/jFf5vwiKijDzKQDc/b/BvnMNwVhAe/Vzv1gvvy8QuPR8sA+7WDw58czO3ZtJc7lc
wrt5oukln8+RzyelgfPP3Ds/tVjI/0K1jTDBPwbq619GPv8qDPZAmUWaXcI9WEMoPY8/PEKa
/wDy859F0O7xjpg2sI9aSNk0fmcH9HmwOviAfPEzSIUcvgN+Yx3p2c8hpgXEuVeRL34GMZMd
5yNoZdRXvwTOIf5whPrav8Bvr6O89PsIQuBIUa7+M6TZF1Cv/mP8/h6+qyMtXcEfnTyhwmve
Rsg/iz+sI86/grvzBtLMpXsJ5Bzaa7+P16wgTq3gd8LDbavrKK99CSl7rxPl538XURGQn/sM
9vf+LeLsrwX1VUW8vo+oe3jHm/jaNILdRVz6DbzN/4GgL4x34MlXvwCSj1ffRFp6DUEW8Ucm
6kf+AL9xGyGzjPrKF/DbwQkG3uE64vyHEIzML9TBjzs81+Zb3/zftPunD+p6P3AqHFrIByfq
ClMfhNEmvuUjr7yCW/kZ0vzLSEuv4K5/DXHhE0j5IIhNWngRfAmxsIBQvIB/8GPE6atIhoL9
zreRFj+OPL2EmD+Pu/l1hOIHkaeWQEohpkPel3TEbBkxPO1AXnge+8ZXkZ/9Hdy7f4608DHE
/CyCMYMgi4jZWdCXEZU+XreLvPQyQrhhXDBmEI0c7v5PkeZfBmeI+sHP4R1vI+ZmQNKQl15B
EAX8YQ0cCWnmOQQjj3zuozg3/hdC8TLS1AUQFNzN/4O0+Amk0jmc/bdQP/BbCAKIs1dw1r8G
fg559VW82jWE8hWk2WfxqteQX/gcgiLjHb2Js3UN+Zm/j7zyQZzN7yCWn0eev4B985soV38X
d+PreO0GytV/giAryOc/jrfzXYTMKlJp+X0aDo8GP/nJT8hkMuMrdu+HysYa6cVLbNxdZ2Xx
wac5P2q8p44wv7eN5+bOlMWfNHhHb+LZKeSF5MNeI/i9bZxqBeXi6+P3KLx8Xx3BrbyFtHD2
Ueb/v2LUb/GNb/0lH/7oJ1mem37fy3/qCX6KX2k8dYQ9xa80TliBNvf3sX+BK3YeNQQgraqk
FAUhdp6L7/tEC5fv+6f+N34/fC4IwvgdURTH79zvPc/z/k5HvbiuO87b8zy6pklW0xAEAdfz
6Jsm2VQqoGMHXSUh6Vsmn8eRlKY1HKIrCqIgoD5EwKLjeUixtom3r+U4WK5LOvTbCIJAuXzy
Todms8mtW7fIZDJcuXLlRJ22N9dpdi00ycURVczuMcWZRTZur/GRj32KfDrB7v4e40SL1Ltd
hva7uNPpfcBiLocQG4zxBvU87xQzxBG9Ew36aOtf/CaUeF4RosH5d4lwdRzn5EB0XXrDIZos
IwgCh+02gu+TUhQsy0JRTioG0TdEeXied4KRozRJTBBnvHEb+D6WaZJSVSzLOvVOHD3TZGTb
lNPpcX5RWYIg0Oz3QRCQEyaQCDs7OxQKBVqtFoPBgHSYF0DtqIHl+vRlEN0mjqCz+YNv8fKn
f4vrb7/Nxz/y4fvW773AYy0CFXWdkW1T63RwXHd8DCMEnTPJFGJ4XVO8c+K/o8Hhuu6pQfQw
M+zDIKpflL8qyxz1euN6ubG84+U4YZ0c1z2R3+T3TNY1jjiTR9AkCTlsp7MYJ/rfwDSZypw0
u8aZLqUoFHT9zLIAVlZWaLVaZDIZDOPk+avT5SKdThvBtnF9jVH7iJVnXuDGj77D6spqYr3e
a5xQgn+8tvZYrQCyIHCuVMJx3WBwhwMhPvCjzRrxmSpJ1InPZlHHKROiVbxDPS84l+aswZYE
3/exLAs1FBGipt1rtSjqOmlNo9HvU9B1BEE4sQJYjkNnOESWJArG6YN7R7ZNKrZaJA2+JAiC
kLhfY/K7HNfFdBzSmnbfVcifYOClpaWHqsfjisd6BXB8n4NOB9f3g2ssfJ/mYEBnODxzBoKT
S3fSjCdJwW6tSIR6FIjyiTNnNGiWCgWyuo4oipRiIkG8bFWWKRgGOf20HNweDtlvt0+sDg/L
mJPi4VmiiyxJGKqa2KZ+7L3oXdvzOOqfvi/B930ajcbpo/MfUzz20aB928budlnI55FFkbyu
s9dsMrJtSuk04kRnTirFcWaIp0lScKNVI2KuSPyYnBHvB/EB4kb8Wc80sYZDZnI5REFAPkMh
Nh0HgUBBjdI8SBGOr4bxsu/HCEmGhXq3i+N5zOVPhh60BgOchDpcv34dy7KwLIsrV66Qz+fp
dhq8s77DXDlHpd4kryuPjRL8WK8AESzPY6/Vom9ZiILAbC6H6/tsNxqnT/tNkP8nB0H878mf
JEyKTkmIi1mTekcSs7mex8HBAY7nYT3g/t2ZbJblYvGELB9hMu/7GQUm090PUT4Fw2Aqk8EJ
xaCeaXLQ7dKzLJKmg06nQzabpVgsUqsF4SXZXAnPGXFwVMEd9WgMBvTaNYa+wrUffItzL77C
9bffvm993is89itABMf3Oez16Jkmc7kc05kMe0dHrG1uMp9W7l3gEEPSwI/PepIkJZpEk96P
MJlu0lw6aTmZTBs9cz2PYqGAIUknZPuzYDkOzcGAgmHg+z5pVT1l5k3CpA4UIV7n3miEEZpq
ozQewVkR8VWpPRxy2OuhiCJlwyCbOh2Mn8vl6Ha74xUAoNNuUKvWmJop0xk55EURV9AYde4p
wR/+6Ccf2AbvBR5rJfgsSLZNNpXCt7osXP/36J0N/OkX6b32r0ENgusmleJJEygkW48iPEjJ
jMSlyJYfZ6SzRKZI6Y3Xx7Ztut3gYF7TNMnlcqQmBla936fZ7UJMkV3M5dBDJT5p9YrXZdKk
G69fazCgNxqRSaXIheU6nkd3NKIcswgNLItqp0M5nSaXSo3zWFw8GZfv+z7NZhNd19ET9JnH
DU8kA0wZBhKQuvlfmT76DqKs4dsmo4WPMfzAFxNFn8haNKnMRfpA9BM9e1jl2HVdHN9nZFnk
DAMplsckA9i2fYoB4oq467qYphnk6ThIkoTluhz3+8GxKraNrGmIsowuy5TTaSRBCE5NTlgF
4qJQ3OcxqQtEiPsQJhm50m4zlckQ5eJ5HoqisLBwMoCt0Wiwt7eHrutcuHDhvo6+xwFPjAgU
R2s4ZLVYJNt9BzwPzzaDY8Mbt0/I3EkiUDRj308/iP8+S2GOp9NkmaFl0RmNkAQh0ZIDIMsy
bmjSjd6PD0BZlscDZmjb1Pt9LN9HDs2ikqrimCaOaYJhsN9uUzYM8uGMnOTLmHSMnfUNZynE
giDQNU3K6TSaLGPbNpIkjVe9OHq9Hmtra5RKJUzT5ObNm1y9enWsBM+W0o+dJ/iJUIIn4fg+
jufhSykEJYXvWnhWH6908US6ydk+epbkQY5m5UnT6MOGQxQMg7SikNG0U/nHy05SUCeZMVI0
rWg2Bsq6jgDImoZqGNjDIbZp0oqZG8+y8EwyRpJifpYe0TNN8H2GvR71ep12u32mR7ler5PN
ZhEEAUVR6PWCw64iJbh21KDX7z5WSvATyQAAPcti9Mq/wkkv4Ft93MIzDJ/9LHBaeY0PgKjj
J0MfkqxB70YUAk6ZMR9kBp2EKIoMLIuuaaKFeaUVhflsFlEQyEXx9YKAYhiIkoQ9GGCGVqQk
HSQpPCLuUY8/ixAxiBT6BmTfR1VVSqUS5XIZ27YTDQdTU1N0u11838e2bTKhDhEpwamU9tQT
/KiQ0zTmZAup9jNwLaxz/wgE4UzvbRSkFnW04zioqpooqwMnPMlnIVo15DDOJ4lhJmda27aR
ZTnR9Bp5bH3fx3ZdXNdFm7AQdU0Ty3HIGwaqJFFvtbCGQ+bm5sY+kbP0j0jPmRR7khgm/o3N
ZpN8zA/Q7/fHMT6TSvBTHeB9gt/awvjZv0MWBXzPRXKHDC/+9rgzo1kK7oVMxAPP4gMhwqSI
MjkQJm38cO8szng62w2O5pUTmHGyHpP5R3/LoogiSSdCPURRJKtpoGlYrkvTNINrlVSVW1tb
ZItFfN9HEUUy4XVLUQRoJLNHwXqTesikaBSvT2S+PattIjiOw/7+PoqiMBqNqNfrzM7Onkr3
OOGJZYBi9fvIsoyoGviOiXLnawwv/vZ4po9m98kZNt7BZ5kH43/fTzmEk4prBFGSGFoWqXBl
SBosk/FJcC86Nf5cluUTFqOOadIejcZh64VUKrhjWNfpdDrkczk8oNrtIgCrxeKYEaMBHjFC
3HwbiTxROVGdWq3WvStwQ9i2jW3b45inCOvr6+NVRlVVNjY2KBQKDPttfvLmDZaWlmh1uk89
wY8CglFAkFQERcf3PQSjPO5EURRPKbSTDitFCS7Jizun4KQYMDlw44PorIENnArPiCPJIhOf
eaO84+JK3HnWiQ1+VZIo6Drz+TyLxSKKYdBqt+nbNqIgjBkhKiNenqqqwQVyqjpmskikiy7l
rtfrCIIwFssiZDIZev3+KQ/2aDQ6MaFomkav1yNfnCatCuxU9596gh8V+ot/D8duIG7/Nb6s
MXz286fSTIosEWPEn8Xt3pH9PcmzG/0dzxuSrUTd0ejMy5yTmCopz4hh4w68tmmO0+c1DV1R
UEImTmsadLsIYX1kUcQPIzxN20YLnWaTDN9oNMZ6Uz+M948YWNd1jNDzHH9HVVXagwFHvR5x
1TWVSp2IPDVNk0wmw+b621hCiqwGre7gsfIEP7EM4KsZei9/GeHqHwVij5I6EZsyKc6cZX2R
JAk7VPwjJonPYpOK4qQVKdpbEB8gekzGf5AiHYcoiicGUMQEkfxfMAwaYQRmLpUah1Ak2fqL
hoGhqliOgx5ajyKHmBumbTQaFPL5e98I2I6DGlsR4h7u7mjEyHEY2jam6574ToBLly6xtraG
53nYts2FCxfQNI0Ll1/kwuWHaoL3HU8sA4iEA1tUQJATB9pkHMxZok1kxYF7HuMIZzHOWVYf
OG0OfVhEjrJJXSWqs+U4eOG366GOE9XloNMhl0rRdV08xxnHDEVe4pFt07csbMfBdBx6nQ5L
s7MnjAFOyCwRU0d1cH0f07Y57vex72PG7fV6+L6PYRg4jkOj0WBmZuahJ4BfBp5YBtAnNp08
SLQ4a/DH0z+MzT+eV1K5SfnGEVlhziorUs7j8UBRHv3QASWJp+OZ8roexEd5Hq1u94T9vzEY
sFetnhDXVFU9tUdYDlfDyLQbrUj73S7WxMSQhFu3bpHP52O374yoVqvomsRP3rzB6x/7BG9d
+xHFfAZZy9Hr1JmamWft7RuPx57gJwWqJKG+y1k2Ht8Pp0Wah3V6Ta400RbLszBpYZFlOdEM
Gs9/0tMqCALYA/zjW6AtYnsebmgqjRBFZiquy7mY6dH3fUSgnE6zMDPD0LZxPQ9Nlk9tlRRF
8Z6Ta1hHf+s/4gwaSBe/AJmVB7bN5H5oPbRMzV2+TFoVePPNH9No1LFHQ3IlgWs/+znnFg44
99Lrv7Q9wf8PU10OCG5zSZUAAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO2d6Xsbx53nv43GfRAgQBK8D4mkREnUYcmSj/hKxpkZx7k8z2Z3NjvPsy/3
L9sks3FsJ46PTBzfkixREiUeokjxJgECBHH3fdS+aKJFEAAJUqQOdn2eR48IoNBdAOpbVb+j
qhhCCAGFYlFsB3UhqqOjByHkyP+uByYAXdcP6lKUZwQr/KYHJgAK5XmECoBiaagAKJaGCoBi
aew7vUiIjunph+hpa8KD+WU0RiLIFXiEfXZwig2sJsDhD6O7Pfqk6kuhHCjMbnGA+FocUDWE
Gx24+7CI9rATOgMwug6wdkDX0dHRAU3TwDDMk6o35QlACDnyv+kuI4CKbCqFpmgUs0tZnOhp
wnqWQ6PXDl5jYVM4OAMR2Gw2EELAsuyTqjflCaBpGmw225EWwa4jQL1omkYFcMSwggCoEUyx
NFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCx
NFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCx
NFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCxNFQAFEtDBUCx
NFQAFMsRG19E6XBUKgCK5ZB40fybnhNMqQk9J5hCOeLY6ymkSjzmVpMIeVjE0zzCPjt41Qab
ysPpj6Cns/Ww60mhHAp1CcDu8iLgcUFSVYQDHugMAw+jAe4goMvQdR26ruOAZlOUZwRCyHP9
m3IbefgiDTuWqUsAslBEOp1GNBpFgZfR6GHBayxsCgdnMAKbzQZCCLUBjhjPuw2weGMGw+9e
3rH+1Aim1OR5F0A9UCOYYjmkooDpr8YA0BGAsgNHdQRQZRUSJ8LX6K/PBqBQjhJ2px12px8A
nQJRnkEIIdAUbddyiQcrUCXFKLtlHlNIZpFfy5iPV8cWanqzqAAoTxxN0RC/v1zzdTHPY/yT
m7tehxBAlRSM/OGbsgauqRp0TTcfZ1ZSNa9BBUB54miyAqLXNj09QR/O/fKlmq8XN/Iguo7W
k51wN3hx5X+9Bcb2yE4JtUcQ6oiYj0ujweo9YyQorOdoMhzlcNFUDfHJJQCVUxCnz4320937
vnZiagV8lqu7vL8pCABQZQW6qmH++pT5GhUA5VDQZBWlNq9KRsM7KI6/egq+cKDu8md/bgTD
ei4NYOT33yDS02K+RgVAORScXpfZy7MOOxZuTO/5Grqml83lD+I9V/7jx1Bl1XxM4wCUmtQT
B1gdW0D76Z6yOfh2ZF4C0XW4/B4QQqCrGlhHbQ98qUxiehWqpKD7hf4d61lIZqHrBEK2CImT
YGNt6Dp/DABMMdhYGwrJHPzNDWAYBoQQcKk8HQEoj4euaiBk517a6XXB5fcAAMSCgPFPRnYs
L+Z5jH96C+2ne3Zt/ACgKio0WQUYBtHBDrPxA0B8YhGxsQUAwPyNBwAATVGRnIlh7voDOgJQ
anPYkeDieg6qoiLQHARrtwM1blNqsG2nHhnOpZ49ObNq9Po2G7ouPGr4UlHAwo0Z9L92qmy0
4TNFjH18A6qsov+103QEoDwdZF4Cn+NAdIJb/+876LrRoDVFNb1HAJB8GMPK3Xlgmwjj95ex
em8eDMMgOthuNv4773+P2PgiWIcdkb4oJj6/XfY+b6MfvZcH0XXhGBRRpgJ4HlAkBZPbfsiD
hEsXkF5eP7Trl9AUDfGJJUiciJu/+xqarKKxswmX/+ebsLFGU1Q3pzIlQu0RtA51oW2oC8mH
McQnjQBax5kehDoiaBnsgDvgNcu3nurG7T9+j42FBCI9LTj77uWKeoQ6m8AwNigCFcBzAWtn
0fPiwKFdX1f1slSCw0JTVCRmVkF0ggvvvQJ/U0NFioLL50bbUJf52Ol1weVzAzDEEO5pNl9b
uDlTUW9f2A+724HZa1PgM8WKOhCdQOYldF04hr4rJ6gADhJNVg+lIdlY25783rUoJLNVc2IC
LUGEu5vNKOlBosnqpmtS23SN9oDoBN5GPxZvPTQjwrXqtpWtYgCA4Z+9WOF98oUDeP3/vIPo
QHvFa5qiQshzSDxYAWCMNlQAB8jdv/wAWZCedjVqsjw6t2OSmcSJmP7y3oHe8/b73yN+fxnL
d+YAAC0D7fAEjSlLdLADY3+9idjEIhZHDDGsTa1AEeU930fiREhFAazDDm/Ih+OvnoIn6CsT
9OiH16DJKvp/dBqAERmmXqAjjqZosNkfeXK4dAFSUUS4u7mirFQUsXBzGifeOmu8d49eoFIW
p91ZX5a9LEiQOQkOjxMyL0GTVaSX1tE61AlvyF/nJzSYu3ofmqah78pJaIoxEmuqhtj4Avh0
EcM/vwwxz8PpdYF12DH64TUcf+M0FcDTRFM3G9gOQaStEEJQXM8h0BKq+x4PvryHloF2NHY2
AQAK6zkoglxVABX126MAxDyPB1/ew9BPL0BXNLgbjJ6+uJ6DIilmHbZTWM9h7up9eBv9YB12
tAy2w7/LYnZg0z06HYOmqmgZ6ED8/jJi4ws49vIQQAiiJzqN+6dycATcyOVy2NjYAMdxmL8+
BYYwVABPk4ffTqCxqwmR3mhd5WVBwtzVKZz8yblDrpnBfuIAxVQet//4HY6/egodw70AgHwi
C01Rawogn8hALAgItoVhd9qRmF5F++meyvrIKmwOFpqigXWwkHkJmeWUadQmZ2JwBzxYvDuL
6IVuxBZWIOsqbHYbXC4XgsEgwuEwfD4f1u6vYPHmNBXA84auGrn0pcZ1WGiqhtjkIjqH+/Yk
gHwyCyHLoWWgve736ZoOEAKbncXUF6Nw+T3ou3LCfF2VVdgddkx8dgt8tghP0Ifey4NwBTxQ
dRWZTAbZbBaFXAHxiUW4PG6c+tE5JEYW4Xa6ypLnStM0hjFiEVQAzxmqpCA5E0P7mcoeshpz
16bQdKwVDdHa06aNxST4TLEshUARZCRnY0aeT5WGLPMSZr+fxNDbF/b+IbYRn1zC7PeTePl/
vw2xKMDlc8PutCM5E4Mqq1i5O4cL/+1ViKKI5YeL0FgdoiRh6u+jOP/uSwiHwwiFQmCJDdnV
DWOkIcRMv9gKnyli9up9DP/sRQA0Ge6ZQNd0xCeXzF6dzxTh9Llgdzoe+9piQTDWwLpqX0sR
ZeiaXuZiBHaeAumqBrEowhvyAQBW7s6jY7i3pj1DCIEmqxByHPzNwQpbhtsoILeWhioqiJ7p
QrFYRCK2hkK+AJuTBcuy8Hg8CIfDCAaDcLlcNUeY5EwMRNdNG2BrQtx2THOdEAKi6yDAkdwJ
YC/omo7YxCI6z/Y9oftpZd93aiGBhmgIofbIDu+qD3egshfcjsPtLHs8+/0kWgY74A2Xe2Jk
QYKmaPA0eGGzs2bjNzB2kWM2E3o0RcWdP13F0NsX4AsHIBYEjP3lBzR2NaPL7cTa1Aq8kQBS
K0nINhX5fB7LE/OI9EWRmeLg9/vR1tmOAb8fDGFgd9TOFdqKruloOhaFjWVBdIJiKof8mhFj
6DzXZ06nStcyRwBCFHz5wZ9BmhrQ0nYOwwMtO92ngqM0AmiKhrWpw59nHwR7dT3Wg1gQYHfZ
wbC2ss5wYyEBiROrGqiAYQBrqgZd0eCLBLA+G0f0RCdsdhskSUKhUEAmkwHHcWZ7Wbu3hPNv
X0aoMYTUgzi6zvWBsZX31Df+71e49D9eh822e9hqdWwBuqaj6/wx8FkOy3dmceKtsxALAhZu
TCMXT+Pyb980P5P5rTGMHacvnsan/7iGgaGX9/vdHQlYB/vMNH6i69A1AtZRvXNReAkTn9/G
hfdeObB7lkYNTSsPmu3mrVqfjUPkBchQ4ZNCSGWSWL2TgI1l4XK5kLy3gu7BXgyfPQOHa3PU
eeGFsvvGJ5fRfqYH01+PofNcH1iHHc39bWAYBtNf3UPb6R4UElnTBkpMr0JXNbSd6kZ+LYOG
aAiBlhDEgoCpv4/C4Tamfg63E2Kex7lfXikbbcu6Dbc3gMZQCHYaH37qaIoKG8tiYzGJXCyN
46+eqlrO6XPX1fhVWYHd4dhxGpFPZBFoCe46/dV1HbIso1gsIpvNguM4yLIMhmXgjDghrytg
YwWE2Qa0H+sCASBzEjw9LO5/fBtNbc1lLtFS3UIdhvFKdIJQewQyJ0ERCxDzAkAAh8cFopd3
Bo1dTWb6ycLNGXgbfXB63dBVDUNvXzCjzqXo8vbp3hYBMBDSGag2BdmchPbI3iJxlINl7toU
Ij0taOprRVPf/raf59IFiHkekd4o7n54Hed+9dKOhvXK3XmceGsYrMMOQghya2m4Ql4UCgXk
cjnwPI/kXBwNLSH4QwFA1OFzeTE0NASoBJpq2AeKKEMRFXiCXjAMg1w8jfFPbqLz/DGc+ukF
uBu8RqPfrMud96/i4m9egyYrYGwMxKKAxPQqPA1e9L92Gs3H26DKKuITi2jqi5rGLQA4PS7z
77M/vwyiE8xdmzIS7UAw/dU9I1WaYXDiJ+cqVqJtsQF0XPvmS0Q6BzF4rGt7+vWuHCUb4DBR
JQUyL8HbePgdTGpuDXyOQ6S7Be4GT9VliIQQyLIMQRCQy+VQLBYhiiJkQcL6bBzHLp6Ax+mG
3+NDuLUJ2eUN+CMBI88mmYMqGxHe+OQShDyPYy+dBADc/6876Djbi4ZoI9buL0PiRPRcMjJa
hRyPma/HcPYXV8x6JB/GMPL7b3DhvVfQ3N+OxPQKOs70mq9LnIjsSqqs8S/fmYXT64Iqq2gb
6oLNzkLIcVgdW0R0sB1OnxsbCwkwDANvox/BtnDF598igDz+9LsvIBMRb7/7SzQFvRWFd4IK
oD6yqxsorOfKfO6HzeKth/C3NMAZ8iCfz6NQKEAQBKiqilw8DY1XcOziCQSDQfj9frjdbths
NsiiDLvTjsxSChIn1DR+ASA1n4AiSGWrtvaCIshYm1pG57k+8FluczQ6u+N7lkfnEB3sQGzC
WACz9TudvXofjV1NSD5YRfJhDBd/8xp84QBy8TQAwBcJIDkdK48DiHwRGmGgExsCVYIIO0EF
8HQghKCQzCHQEoSiKBBFEfl83uzJFUUBADgcDsN3LhJ09HfB4/GAZVljy5IqMQAAGPv4BjrO
9sHf3ABNVuEJ+irKPGmIbqRs7xTYK6GpGorrOWiKhsauJmiyCi5dBEDgDniRjW2UG8EKn8NH
n32Fn7zzKzx+9jnlICGEmMYnz/PI5/PgeR7FXAGr4wvofqEfDocDbrcbgUAAHR0dcLvdsNvt
plErcSIWb84gEHj06243CrcSHeqCu8GDQiIHiRN2FMC9v/yAM+9cgm1bJ7g+G4fMSeg427vj
5ysks1DlynwhiRMx+fltnP/Vy4Z9UOBx6z+/xZX/+PG2OEQ5+bUMAtEQpKIIQgiELFcWAQaM
dOyyEaCQXMG3N+7gzOU30d2yNwnQEWBnxj8ZwcmfnKsZkS018HQsBdbnQLFYBMdxkCQJqqqa
J/A4nU54vV40NDTA6/XC5XLt+3uXBQkzX4/j9L9cLHtelVWwDha6rtcdFOUzRXhCvoqyiiiD
6AROr6vGOw3yiSx0TasI/q3PxiFkOXS9cBwMw+DuR9fRdqobDo8TDMOUbYEIPBohlm4/xOl/
uQiGYTD1xSh6XhyEZzM7tbRVYkNr49ZIsA5ZVOFp8NS1M+9Rgc9ycLgccHhq94QHwbFXTkIj
OsRi0ei5i0UIggBZlqGqxkZNLMsiMbGCY5dOIBQOIRwOw+VylfXi9bDV+7MT8YmlqlOf2e8m
ED3ZhUA0aD6nygr4dBENrY1Vr1XLqN9phJE4EUTTsT4bR0NrY1Ujtfl4m1HXySU0HWs1sj4f
xtF+uttcTVbq5d0BD8QCj4lPR/Div78BTVZhdznQe3kQDvcjAS7dngUAnHnn0tYpUB7fXB1H
x7EWhBp2VutRIrOSgqfBW1d+/Fb4TBEOjxMOtxPZ2AaSczG0n++DIAjgOM5s3KU5OGDMw0s9
eDAYRGtrK5xOJ1iWfdTAtwSGtqOIMh58eQ9n/vXSjnUjhICpkveyHbvLAWcVAZz4sZFuvTUQ
9vDbSaiysuu9C+s5KKKMcNfu32chkYUqKWBYG5ZH53DirbNIzsTQMdwLVVaReLDy6O/pVTR2
NcPd4IPCS2iIPhJifi0DXdPhPtEBT9CHvpdOIhdPIzaxhOGfvVi2aB4wGv7oB9cAlHmBBKyu
cGhrb9xXLtBRmQIRQqBpGhRFgaZp5jrV0nOlOfj8nRnYfU4EWoLQVR0sY4Mv6IfH44HP54PH
44HT6YTD4dh3XhWfKYLLFNF8rBWEECii/ESN0f2sByis56DJasXUpB5kXkJmJQUhyyHc0wIh
xyE62GE+Hx3sqOs6q2MLIDoxt2ZUJAVOr5E8J/MSJj+/hcE3z8Lb6N8qABk/fHsdMoBT5y4d
KTcoIQSqqkJVVdNTIgiC4e/e7KVL+9IAxlSk1Ft7PB54vV643W44HI6qDVrIcSis59DS336g
9VYlBZqqweVzQ+YlTHx267FSHjTV2JYk1BmBVBB2nSLVIwBV2gxobRbRNeO4XNZevS3E7y/D
5XWBddqhq7oRyQVw96PraIiG0Hqq25yr14uuaiBAxT1LQsjGNnDix+dgd9qxfGcWLf3tmL8x
jaF/Ol/uBSJEQyqVhiQ/uzZAyVjUNK2sQZf+lZ4rzatL2O122O1201Pi9XoRDofNRv04GbBG
eP5gktFK3guGYWB3OUAIAZ8pwtvof+x8H13dTJojgK1GA90rox9ew4X3XjXTE5IzMUhFwQx6
3f3oOobfvWymIttdRp5/Q2ujuWRS4kR0XTiO+OQSHnxxF+d/vbdctLWpFWiqVhFbKeVzdZ7r
w/gnI+CzRcOA9rrMBTdlXqD4/bv4fGQEF1/+BYb79zYn3usIUJpqlBqyqqqQJMn8V2rEpde3
YrPZKhq02+2Gy+WCw+EwX3seU7of/OMujr0yZBqPmZUUuHThiaVmb6WeEUDmRMx8N4HT/3wR
M9+Mo+1UN/xNj9bzZmMbcLidcDd4zR56+qsxsA4jXTnYFkZxIw+ZlzDw2mnIglQxZ9+J2MQi
mo+3lRnbU1+MoufSQMVUseSp0jZtio7h3nIBFFMJpBWClqZmuGtkH9ZCFEXkcjnIsmxOK0oN
vPRvOyxrLHQoNViXy2X+29qQy4xEi0MIQSGRNb0xxrRmEZ3nDj6yXI8AdE2DzElwN3ghFQVj
1NKJOS1KzSewMjqHxu5m9Fw0Nrotlcssp7A6tmCsKmOA7EoKiqigY7gXUlHA7NX7OPXTFzD6
wTWceecS+EwRc9encO4XL5kLb9YfxhFoDWHhh2k0djWhZaAdUlGEw+MEa2ehqxoWbs6g78og
pv5xD72XB2FjbcjF02jpb98mgPUlfPbtbfzozbfRGq40tIiuQVI0sIwORWfA6ApYpwdOO4ti
0ThN3ul0msbf1gZu9UU21Zj/4QEaO5sQ6oiYK6Z2WrkFGL77hR8eYPBNI01AlRSk5tbQumU3
tWrk4hk0tIb29BvUEkBhPQeFlxDectDE+mwcUlFA57ljGPnDN7jwb6/WtAOqkU9kIRUEBDvC
cHpc0FUNsiDDHfBg5utxFNN56KpuZniW6lSa/yuijJmvx9EQDaH7Yr/5+urYAhZuTOPCe6+A
6ATppSS6Lhw371smgOTMGP526y6Gz7+NcycrDSS+mMd6pgii8JBVAgY6WIcbfb3d5pdldfhM
EU6va9eGDBheD5udhd1phyLIGP905EDz+rcy9cUoBl47A3bbwpn0YhJculi2s3IJXdfBMAwY
hkFyehWhjgicPjeKqTxiYwvovXwCTp/hMlclBWv3l9Ey2FER9FoZnUPHueqL6+/9+QcMv/si
iqkCFFGGmOcr1jtvLCaRXkhi4I0zFe+PTSxCV3V0njOmiCt35xFsbUQgGkLiwQqITsxYwvLo
HHzhAJr72yAWBCzemC7fGc7fHEVbay+GaqwGY1kWfLEIHXi0gSnt1cvIrqRQTOXrKuv0usyV
XA6Ps6LxE50YmzztgK5qxu7Ju3DyJ+crGj8ABNvCaB3qrPKOcuwuh7m21t/UgIZoI+7//Q40
RcPqvXkIeR5i3khjXrg5jakv7oLbKAAwTogBqb703Ei9NrZnDDQHqwbOuFQerLP6aBJoCpa5
RyO9UaTm1sy/m4614vb730NTVPgjDWjuN8Tg9LrQ99LJci8QY2NRTMcRT+XRsyUKuKUEWlqa
EQh4oOo2MLoM1ukxe4mDHgEUSYHDWX0Rh65qGPvrzR1PE3waqJIKBjiQ7yK1mEAunsbxV4Zq
ltGJBqfHad5PUzXc/687CDQF69pQ17ZDpNY8r1cn8DYGynJvWoe6jCmQTuD0GNmjLYPtUAQZ
9/7yA7pf6Ic35AOXysMT9Bn7/29SSGbh8nsw+bfbOPvzK6aHyOVzV/X1dwz3Gp6rKt9pejGJ
2OQSwt3N6H1x0FjNd7YXNpsNM1+NI9zTjCu/fQuKpJgry+786SrO//pl2AP2rXEAFf/47DMQ
uwOnXngN7ZGnHwe495cfMPjGsOku2wohBGKefyYyFLcy/fUYGjubzGG3XhRJwdR/jWL43Rd3
L7wDqqQgPrkEf1MDGjejsYnpVayMzuH8r1/ek7tW0zTc+eP36Lk4AIkTAcCcatTL8p1ZSJyI
/h+dRnxyCZHeKJZuz4LbyGPwTeO3LS2a8Tb6jaWSO0wqavn8paIAIceb9YwOdmDl7jyigx1w
eJwY/3QEfVdOwBcOgM9y8AS9Rme1dVH8F5/9HS6vHb0nX0JX9Ggkw41/OoLBN4Z3TcY6KIx5
va3qyitVNnYpq9aT6boOuShWFfvjsrGYBOtgEWwN170NI2D8pkTTsXZ/GdETnUgvriN6osNY
+5sXqtoNO5GaW4O/uaGqm3Pyb7dRSOZw4q2zNaPIiqQgMbUCLl2oulZg/voUoic661psRAjB
zd99DZAt6LpONE0n+0FV1X2977AR8jzRVO2p3V8RZVJM5QghhDz8boKk5tce+5qyIJF7H9/Y
9/sL6zmyPrdzPVRZIQu3ZojEi2Tl7rz5vMQJZPTDa0TipbLy2dgG0fW9tZ3cWppsLCXNx/H7
y2TkP7+tWX7is1tkYzFJEtOre7qPqqhEVVQiC1LFa+U2AMMcOZu2nn1xDhNuo4DCehZOnxvH
XzlV1942u8E67Bh4/fT+L8CgplFZQtd02FgbNFlFaiFh5vOLeQEDr5+Bc1v2bGx8Ef7m4J5c
n4zNVlY+0hdFpLf2djyn/rl6omBpTl/Lxbt2fxl8ugiJE3HmnW3JfHuS0k4qe0ZHgGeF23/6
nki8uO/367pOsrGNx6rD6EfXiCorZc+tz62RxZEZ4/UPrxFVVokiykTmJTL1xSjJrpbfc+Hm
NMkns/u6fz6RIapy8O2Ezxb3PPqUeG63RiSEQJWUHfPNq8FnikYa8BOyCWqhiPKuBt9WZEHC
wo1pDL4xvO97inkexVQeXKZoRmVVWYGuETg9xr45Lr8H01+PYWMhgUv//gYcrtrZrNVsAYkT
oSsaPJseo9EPruHsLwxPz8LNaTT1tZqpEnv9DkpMfTGK7ov9ez5DoCoHpcLDHAE0RSV3Prha
fj9ZJSN/+GbP11odXyQbi8mK57l04bF66L1y+/3vK+bRj8P2EULiRVLcyFeUUyS57vuqqkoU
SSZLd2Yr76fpJLWQIPK2a6Xm10h8csl8zOc4s3fWtfI63vz91/uyz8SicGAjyXMRumVYG07+
uHxPfNbB4uJvXtvztdpPd1dd/JKNbdQdwKrF2Mc3dj3eJ7OSwtz1KVx475WKefRWiqk8VEkp
e04RZYx9fKNqeUWQkZyOmY+5VAG5WLqinN3pMO+rKSqW78zuWF9N1SDmeBSSubKgnMyLyCyv
V6yki/RGy9IyPA2P0hYkTjSDVABw6b+/XnXD2lrk4mlkVlJw+dx7sjV24pkWwPinI5A4EQzD
HIp7cCvtp3vMVUyEkKqNZzcG3hiuiLZmVzcwd23KfBxoCdXlS8+uboBLFx7VJ54G67RjYHMK
pKkalu/Mmv87va6yVIHGriY0tDUiNbeGtQcrEPJ8xT0UUal6kmJh/VFjJxoBY2OQWV4Hn+XM
Mi6/xzxrq17cAU/NHe5qcedPV0H0R7s7b03jXhyZ2fVgvd14pgUw8NqZijn+0u1ZJB/Garzj
EeOf3ITM7+/AutLmuHvFHfBU+PgDLUF0njcavCorsLG2st3MAKMxl9aplnB6nXBsllNEGYnp
VdhsNtOrRTQdTq/L/L8apTUFTo+zaiqCO+Axlz9uJbO8bgrD5Xej/7XT6L7Yj0BzteyARyiS
UtYgS2cC7xVFlM3rDP3TeTPdJtASQnDLmmS7+/G3j3+mBeDyuyuGyIbWELx1RH8HXj9TV0Ja
NexOe9WGsR9Yh91s8HNX7yO9mKwoowgyFm9Ol9fB7URp00unx1Vh/BKdIDkTg93lQPREZ9VR
yxcOINQRQbi7BZ6gD9nYRl09ZvcL/Xs6hwwwpjfjf72JQiJrPuf0uczeey88/HbCnI66t0yh
ttNxpvexM4yfaQFUI9QegX+Xnggwhui9zC+fBKzDXhGJNfbRlPHib98sf17Y2ZZgXXYMvvlI
FIogV4yMsiCZ0yhgc+VUnTt+aIqKldG5usoChs3SNtRVtmtEpDdaFvXNJ7LQ1N3vP/T2hV1H
m4PiuXWDHjRcugCH2/nE3aPZ2Aa4VB4d21Z8ZZbX4Qp4HsvVl1lOQchz4DNFNPe3l00famEc
aq2D6DpSCwm4Ax6E2iNgGAYSJ0KT1X3va7o4MoNIX7TsBEipKEDX9KeW0/VsdZFPkVw8A27D
GHZ1TcfirYdP5L6h9gg6zvZt2gGP7tnY1bynxq8plXZEY1cT2k/3oPtiP/yR+nK7UnNrWLk7
B4fbiZaBdqzdX4G+2WtzqTxym5tK7YeeSwMVx58W1vPmRlVPAzoCVEFTNazPxCiEwGUAAAVJ
SURBVCpWWS3dnkXHcG/Nwyp2QhFkw6CvMWVVZRUb82tlux/XU8/VewvofuE4VEnBxmJy161D
dE1HPpGFKspoOrbztuv72RbleYOOAFVg7Sxah7og5DisTa2Yz7v87n0ZdQAw8dktyGJtr5Td
ad9T4weM02NcfmNjK7vLgehgR9WRYCsb8wms3pvftwdFk3ePHTwNVu7N7xqDqcZzMQIQXcfS
rdm6Fng8Llt7aiHHQcjxe941bq8QQqCKSs3tGXd7fSv1jgT1sH0EKK3Tza9l0DJwsHsgPS6p
+TUEWkJVt3rciWd6BFAEGSCGC7u09vSwmfzbbUi84bv2BH2H3vgBwxM08dmt2q8LMiY+r/36
Vkojwb7qsfl912J9bg2JByvPXOMHgKa+1j03fuAZHwHGPr6BgdfPPFYU2Ji39xzYxlVHmdt/
/A5nf/GSuU7ZCjbAMy2AnSgFfnbbgzI5E0NjV7N5WuB2Fm7OwN8U2Pc5XNspbuTh8roPfbfp
ahDdSJnYz76c1bCCAJ7pKdBO6JpeZqDWomWgHQ63A4sjM1jfkohVomO4p+JQhhK5eBoPv53A
wo1pbCwk6qpXLp4pCz4dFIoo496ff9i1TLXPSKnNczsC7BVFUmCzMXtbFK5qpg/cxtrK3lvc
yMPpdVXk9RwWRNchC/K+5rn7hY4ARwiHy7Fj41+4OY3UfHnvydpZONzGGQDb35uPZ8CnKzMp
DwvGZnuijb9eCCGQhd2TDm+//725r9CzhGVGgN3YOkLUa188kXoJMiROLNtw9klRzwggFnjM
fD2O4Xcv73gtqSjC6XM9c6OJZUaA3dg6QmiKhsTM6lOukQGXKRxYqsDCzekD74XdAe+ujR8w
gojPWuMH6AhgKdYerKD5eFvdq6moDfCcoaka7rz//VO7/92PrmP6q3tVc/53o9659OMQ7m6m
nRSMNPFSwO+5E4AqqzVzym2sDae2Hfn5JBl6+wK6LhyveZLiTiiijMnPb5f9OAfNxCcjUBVl
94JHnLsfXgfZ/JKfuynQ4q2HcAc8B5LrchjMXZtCsK1x1/O3ajH6wTWc/teLe97u5TCwwhTo
uRMA5clhBQE8d1MgCuUgoQKgWBoqAIqloQI4ADIrKTz8duJpV4OyD6gAtrE4MrPruVzbaWht
RO/lwUOqEeUwoatEtuFt9IPoe3OMsXYWOKC9KilPFuoGpdSEukEplCMOFQDF0lABUCwNFQDF
0uzLC5TPboCwHgi5dTj8EUQO4qwmCuUpsC8vkKooSG2koKgaiK6js7MTmqYdaW+BFSGEHPnf
dF8jQGYjibX1HHwOAmcgApvNBkIIdYMeMazgBqVxAEpNrCAAagRTLA0VAMXSUAFQLA0VAMXS
UAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXS
UAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXS
UAFQLA0VAMXSUAFQLA0VAMXSUAFQLA0VAMXSUAFQLM2+DsmrhaZpB3k5ylNG1/Ujf1LkgR2S
Rzl66LoOhmGOtADoFIhSk6Pc8Esc6BSI8vxTyKUhaSw0MQ/d4YWcT6Eh0opEfA19AwNw2Y9W
n3m0Pg3lsfE3NEKReMg6A7WYgM0bxdL8DDrbw1hPc0+7egcOFQCljOxGEmvJFBSRh8r6waWX
EY60YH4hhoaA+2lX78ChRjDF0tARgGJpqAAoloYKgGJpqBuUYkny8Ye4NpWkIwDFmgj5LHyh
Rvx/UrpBu3dbpyEAAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='192' name='Sheet 1 (2)' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO2913NcWZ7n97kmvbdAwhsa0BWryHIs19V+ps20nZ2Z3ZmRdhWSQhF6kv6B
eVDoUS9SxCpiYne1O657e3pMT293V3VXl2cViyx6C0PYBBLpvbtODwmgCAIkkSDIzGrezxPI
zJO/mzfP957f+Z3f7xzBMAwDE5MnFPFhP+BO/RiGwePS025t7baNaevzZWunPLQAdF2/7793
gqqqe2J7J2ia1nab3f543W5L1/XHams37MZWO20eWgB7wW6+pInJXtAVApAkqdOXYPKE0hUC
MDHpFF0hANMFMukUXSEA0wUy6RRdIQATk07RFQIwXSCTTtEVAjBdIJNO0RUCMDHpFHI7b04l
lkjma/SEgzSaDfr7+vbkIjRNQ5bbuhQTkz2hrV5nsVgpZeIINLHZfei6vmU5fbfL67tJh9iN
LV3X27a1bqPd5XzT1uY2u+kXu7W10zZtCsBCdKCfaMiPoigIoohoGBs+vGEYCIKwK5++3RFg
t7ZUVW3b1noHEcX2PMZut6VpGoIgPDZboigiCMIjt9VOm7Y+2eUNMOYNtHUxO8F0gUw6RVdM
gs0okEmn6AoBmJh0iq4QgLkQZtIpukIApgtk0im6QgAmJp2iKwRgukAmnaIrBGC6QCadoisE
YGLSKbpCAKYLZNIpukIApgtk0im6QgAmJp2iKwRgukAmnaIrBGC6QCadoi0BGIaOoqoYhrHr
re5MTLqJtnKQ4/OzLKdLxHpDKIrG6Mgw8PAb5Gqa1vYosG7jd21z1/U6h8f1vXbbbjffqxuv
ry0BCKKAaBhUaxUk2bntSKDrettFD4IgtD2i7PaG7ub6Hqet9Ta7bdetttb7yuP8XjuhLQH0
9MYQbR5CAT+6rm1bEQbt+/TGHZ/RThtd1x+Lrd1Wae3G1voP9zhsrdt7XLZ2UxG2276x0zZt
CUC2Ooj1ONb+ZWnrou6HOZ8w6RRdEQVq9wlkYrJXmD3P5ImmKwRgukAmnaIrBGC6QCadwux5
Jk80XSEA0wUy6RRdIQDTBTLpFGbPM3mi6QoBmC6QSafoCgGYLpBJpzB7nskTTVcIwHSBTDpF
VwjAdIFMOkVbPa+QTXLz5jSVep1KpbJnF7HbQgkTk4dFMNrpfYbB4tISjWoR0e5nZDC2ccrI
Orqut/1EVxQFi6X99Ord2NpNm/VbtJvCDNPW7ts8Dltt1QPoShXJ6sZtsVCt1swjkj7ntswj
ktoUgGh10dfjautidoLpApl0iq6YfZoCMOkUXSEAMwpk0im6oueZI4BJpzAFYPJE0xUCMF0g
k07RFT3PHAFMOoUpAJMnmq4QgOkCmXSKruh55ghg0ilMAZg80XSFAEwXyKRTdEXPM0cAk05h
CsDkiaYrBGC6QCadoq106Goxx1K6RE/IR7PZJBKJ7MlFmCOASadoSwCJ5CqaIrCyUsTiCBDS
dXRd39SB7/73TlBVte1Cid3a0nUdVVXbarNuo93ifdPW5ja7PWZqN7Z22qYtAUTCERaXU4R7
+tGaDbMi7HNuy6wIa1MAHn+Iw/5QWxezE0wXyKRTdMXs0xSASafoCgGYUSCTTtEVPc8cAUw6
hSkAkyearhCA6QKZdIqu6HnmCGDSKUwBmDzRdIUATBfIpFN0Rc8zRwCTTmEKwOSJZksqhGEY
a/koAqIk0n6KWvuYLpBJp9gigHopxy/efBuraOUr3/82jsdwEeYIYNIptjx67R4P+wZ6yVTq
7WXKPQSmAEw6xTa+h4jX78Xv8XB3t9RUhVyhiKZpbedo3/ciTBfIpENsecgLgkSlUSW3ktwi
gJWlBeqCjVIug2pIjI4M3jFnaHH3v3eCvlZY0w6GYezK1m7b7GaU2q0taL9I5fNgazf38VH/
xlsevY1imkSqxDf/5IfY7nrN7XGTSSRQDB19my/yMB3FpMVu72G3063fa8sIkFpYQpVVfvur
d/nBH/8+dx5d5/H6OTDhxONytBQmCJsqita/YLsujSRJuzrg7XEd1qbr+q4qp3Z7MBy0fw93
e0je4/pehmHsqiLssR+SN3D0aXzFIoaqbXmzZLER8N09Ljw83fhkMHky2FYmycUpfv7r9x7b
RZgCMOkU2wpAtMi4LPYtk+BHdhFmFMikQ2zpeZqqIlpdiHrjsV2EOQKY7JTVfBVN37v+smUO
sHjlEnOKRu/wUHckCpmY3MFMoogsiYQ89j35vC0C8EZiPBfrwU6XZMqZmNzBSxO9e/p5W/q4
zW3h0w8/5MPTZ9m7tV4Tk+5k23QfpVEnXyzR3vrb7tnNtogmJnvBlhHA5Y8Q8Mok5lYeWxTI
nASbdIptR4D+4SN8b3BiSyqEicnjJpGvYSAwGHY/ks/fdp6bX57h/NWZxzYHMF0gk3shCiCJ
j65/bCuAilJm+dbiYxOA6QKZ3Iuoz0Ff0PXIPn9bFygaGeLpVwbYm0iriUn3su0IIEkSs7du
0nxMF2G6QCadYosAKuk452/M4gsGufvoCcPQuXnzFvl8nmQyuWcXYbpAJp1iiwukqSpWuwOt
3twSBk0szpIrVBCMJWRHgLB5RJJpq4023XhEkmBsc1XrBSB3d8patcxKIokvEEJTGkSiUXRN
23REkq7rj+XYosdpyzwiaW9sfW6OSLrXDXE43YyN7X081nSBTDqFme9m8kTTFQIwo0AmnaIr
BNDuJMzEZK/oCgGYI4BJpzAFYPJE0xUCMF0gk71gJdd+vXBXCMAcAUz2grlkiUK1vQSex7UB
9H0xBWCyF5w62APQ1spxV4wApgtk0im6QgDmCGDSKUwBmDzRdIUATBfIpFN0hQDMEcCkU5gC
MHmiaSsMWs5nuDG9yOBgjEa9wfDw0J5chOkCmXSKtgRgtVmxSBL5fBrZ5ts42+thK8J2U/Xz
OG09ysqpeLZCX9C1cR7zXtvSdANNN7DKWwf7dmzNJIrkq01OjoV/pyrC2hJAs6ngDfjp7Qmj
qSqCKCIaxqaKMEEQ2q7SAnZVEbYbW91WpXUzXuSjyRR//Mq+R2JrbqXAQrpMsdbku8+Pbnqt
nYqw0V4fugGyLP1OVYRtWxLZDtoelEQ2m02sVmtbbX5XSiJ13aDWVHHZLY/M1t021jFLIs1J
cMcRRWFLx3zUNpYyZbMMdQ1TAE8gt+J5/u6DaRTtdyP4oGg6irq779IVAjCjQI+XLz81wNHB
IOdvpzt9KVso1Zr8y7n5ttrciue5tpjdlT0zG/QJ5dBAAEXbehRup3HaLHz5WH9bbY4OBXdt
rytGAFMAjx+LLGLbJjTaaSRRIF9pMJcsPRZ7XXEHTBfoyePNi4uki7VtX7PIInbrzqN7xWqT
n7fpNq3TFQIwR4DHz8eTq+gdjAS9ejiG37X9ESwRr4Nev/O+7X95foFsuQ6Ay27hy0+15zat
Ywrgc0K9qe3p+bh+p5X79f9KXeGfPpndM3t347DKyNLuu9/rR/vwOVtrR5Io4LDubjrbFQIw
XaCtKJrOJ1Of7cD9yXSSeKa8Z58/MRC478krDqvM148P7pm9vcZhlZHaXMDbjq4QgDkCbMUw
DPyuz1bHXzscYyji2VMb6VKDmdXtJ5uiKOCwtZ6qTVXj7PTebYf/qChUm+QrjbbamALoAlRN
58zUKtXGZwlcVlniQJ//kdqVRAHXWif/7ZU4K7nqtu/TDQjcw1/vJtLFGqliva02XSGA3wUX
6MObCWaTxV211Q2DgMvGL88vUGtuzmJczdeor/1ftaGSukfkZDcEXFZ6/Q6gdQJ7xLv9oVh2
i8S+mG/jWuPZzUL56NYqepvzk7/7YBptj3/38V4f+9eu80FUGyoGXSKA34UR4NnxCIOh+28d
/9OPblNpKNSVzQtQ60/7H5wa2zKZS+Sr5CqtvW5y5QaJ3FYB3F4t8vHUw7kodou0o0lptaGy
kN48Fwm4rG2fKf2d50YQO/i7v3N1mVy53l42qKY2yebL+H0eDF3HarPtSTbok3JARq2pkshV
iWcrvHIodl9bdUXHYZPZSRdRNZ2mouK0t5dRu54N+vbVFQ4P+okFHnwa40KqjKZrjES9CILA
ry8t8dRwkJ47wpa1horNKm3q4I8yG9QwWvfWaZO5upCl0VQ4ua9nR5/flgCq5RILS8tYLCKC
ZGd0eGDjJq6j63rbHUVRFCyW9jMid2NrN23Wb1G7P97D2PqHM3N88+QQdsvOBN6urWpDpVRr
4nfbEBCQRGFH5/H+9kocRdX58vEBZFGgoWrIorip7VuX4xwdCtKz5l7t5vraaZevNDl9M8E3
Tg6haDoLqTLjvd4dfX5bAkjG58hUDFx2kaaiMz428rkbAe683p2y2xFgt7aShRo+l62t2PZ2
thL5KgGXDds2IlpMl7lwO02P38ELB3q4Mp9lKOLeiK3vxNZ2T/87+bsPpvnDU2PIkrjtCFBt
qDis0n0fLLu5h29cWOBrTw/u6IHVlgBUpUmjqWJ32MEwECXpiT8jLFWo4bJbcNpkDAOqTQWX
zdKWrUpDwWmzIKzZujyfocfvxOu0bnzWtt9F01F1gwu305wYDWKzbn7vxdk0c6kS3352mHim
ymDYtalTlKoNXHYLoiiymC7jc1nxOh4sgPXv1VA0ZEm4Zzy+1lCxr3Xw7QTw60tLBFxWTo5H
7tlZt7uHum4Qz1YYDG8/57qzTb2pcnUhx7P7Itu+t61Hmmyx4nI5kUQRSZJ25J/uhM9zFGi1
UCNXbsWeG4rKr84vbnrdMAwWUmXqTXXbqMdCqswvzy9uRHpuxvMMhj34nDbeuLB0X9sLqTKf
TCWZThS2nYQ+PRpmOOLBMGAmUUDRdFbzVSaX81TqCj8+fRtFa7UcDLs3df5aU31gqoTNIt13
Mcphk+/7FP7q8QHylSbtLnCX6gpLmcqO3qsbEPLeO4TbFSWRu5kDPM4R4FY8T8BlJfqA/JTt
bKmGwJnJVWRJpD/oYiTaWsxKFmosZcrMJUt848QQ9jV3Zyldxm2X8bu3D0neTVPVWEiVGYm4
MBA5fzvFCwdaE8BKXeFHH87wp6/t33CDcuUGdUVD1XQKlTqHB4MbI9uV+QxDEQ8+p5W3r8Q5
2O+nL7h1YtzpksilTJlev/OeUStVVVnJ19ENg+EHLB6aYdAd4HFY7n2zNZ3//PatLfH7jydX
UTWDn5+b5/n9UV6e6N3o/DeWclxfzKHr8KVj/RudH6Av6MQiiyQLO4v3W+XPYvQGBiHPZ8LJ
VRq8eCC6aQ4QcNuIBZwMht0cGghs+iy/y8bHk6tousEXj/Vv2/m7gZVslWJN2fL/f/3u1EYQ
wW6VdjSH6goBdLsL1Ot3bEpLuBMDePFAz5aJZthjx8Ag7LFvipB8PLmKyyZzaMDPbLK4JSNy
IV3mnz6ZZzXfEkCqWOPmUm5H13mnGAAGQm5GIp4dL54Nht1rIm11IsNojSLrnL6ZeOiEvGKt
SbbU3mrt3Ty3P0rQvdWt+cGpz3a9iHgdRH2OLe+5m64QQKdGgDOTqzTV3VVFZcsNri1ksUgi
B/v9m2Le2VKdhqphkUQGQpufoqlCDYssEfE5+Pazw5teu76Ya00YdZ2jQ62ns0US8a5FZu7s
kLdXi3x4I3Hfa2yqGr+6sLjj0QTgYJ+fa4s5CtUm5XqTty7HN14LeeysZCsPVUucLTV2nK7w
N+9NtTU/cFjvP+fYjidaAGGv474pwXc/Ae9EFgX8LhuGYTCf2pxQJknixpN9X8yHVZb463cn
effaMifHIzis0lqE5LMhejVfxWaR8DosDIbcNNaKvC/OZlB1A8OAdKnGm5daE+OhsJvn9n8W
2ag2ta0TYQOeHg1xZLC9ksGgy4YogMdh5Q+eH9n4/4P9fpLFGoVKe6ew3MlI1MPB/p3lOH3/
xVHWB8+rC9lHUsPcFQLolAs03uvdNka+TlPV+OWFVlTnbiF4nVb6Qy6aqs7sXeV7PqeV/rv8
5x+eGufUwR76gi5sFok3Lm6OFiULNZw2CZ/TynDEzV+9M8n711foCzqZXS1Sa6q8eXGJ774w
SqWuIEkiVvmza3/z4hJNRaPWVJldLTK9UuDcTIrx3q25MbWGuiV35zeXl1jOVmiqGvFsBY/D
iqrpNBSNyeU8ZyZXATgxFsFpt7Sd+rBTri1m+XQmBbDJh5/o93NsePe1v+/fWKFSVzZdt2EY
3SGAbp0E2ywSPzw1RlPV+dXF7UOSNovE60f6tn0tW25s7FZgt0obHdZhlYkFXJtciWPDIXxO
G2dnUsyny3z96UGODgUZ6/Fy6mAPTptMramSKdb51YVW2PTOkee7zw9js0icnUry6e00fUEX
z+2LbhrF3rocJ56tcGYquSXzczlbJei2YRgt/xlabtbluQxjPV5OjH022vyn304yvVy4531b
zlaYSdz79ftxsM/PUyMhAD64sbLRYWVJxNJmAU2+0uBnZ+cwDAOnpPOXPz/DrZs3uXDhAufO
nePcuXPdEQbt5ELYfKrEYNh938SsOxfCsuUGy9nKjnYiyBar3Fop8cKB6KbP/+jWKgF3a5T4
5YVFvnA4htdpJVdusJqvcngwgM2y9X7EsxXcdgs+p5VaQ+X/e/sW/+NXDyFL4qbvdWU+u7EX
aH/IxVuXl/jO86M0VW0t5aH1WjxTZjFT4ZnRMIYBNsvWhaqjQ0FiASfVtUUtURC4vpgl5LHf
cwU4W6qTLTcIuG0bUamdhEEv3E7jc1kZ62mlMdyM5xmPurFscy+2Q1EUyuUy2WyWSqVCtljl
ynyaUwd7cTqdeDwefD4fDocDWW7NF7piW5RORoEW02XCXvs9V1zXF7KGIq1VR1kUCNwVgShU
m7hsMoqmU6g2N+pZ37q6gtdhZWq5sMnvjXjtDEc8yJLAd54bYXI5z2yyxPP7oxvpyUDLlUkU
+dKxfv7+o9tEfXZeXUuic9hkvnJ8YNN1VOoKlYZKU9XQdB1JFHDbLXxnbU/QO10mgKsLOW7G
84z1eLeNmLx2OMZytrXg9NaVOJIo8PWnB3FapW07v64bLGXKDEU8lOoK6WJ9U1j2XjQUjUtz
GfKVBvlKg1y5wcnxCBP9/i2b3Oq6TrVapVQqkc/nqdfraJqGYRhYLBbcbjdut5uBgQFkWeYL
L99fdF0hgN0kST0MDUUjU67TF3DxyqHYhpuw3RaFypqPvy4Ar9O6EZVZ5yenZzh1oIeQx06y
WNsQwDdPDCKIImenkhsC0I3Wbs3Zcp0evxObRWJiIMBf/voGT4+EUFQNl92CYbTi8qqmE8+U
+e7zIyyky5t82Ltz3+NrERpZElE1fUuHX6dSV3DaLXzxaIwvHu3DujYPqtQVHFaZuVSJ0R4v
M4kCuXKT0R4vL0/0cHYqRanWZClbJV9VGOvxbroX1YbKUrbCUMTzwAWoOzEMg6jPwfP7o6ia
jkFrv9j1p3m1WkVRFHRdRxAEnE4nXq+XgYEBHA5HKyvhjk7+udsc93G7QNmKwnK2wtOjYaAl
iH85O88PXxrb9N519wjD4MMbCfpC7i1ZhjeWciiazlDYvSWmr6oqDdXYJKx6U+X//sVVvnJ8
AJssEfU58DmtLKRLrBZqLKbK/MFzw5QbKv/8yRyHBwK8NNG70b7WVLHKEvPJEvFcZWNEUFWV
fz67wLeebc0FDAN+dWGBY8NBAi7bpmv4+9MzVBoqz+6LkC7WGYm2OuxPTs/wleMD/PSj2/z5
6wf48EaCVw7HtvjeqqqSKNTxO224HfdfwV93nYy1rM71jtoSm0S1WiVfKJDL5UlkingcEpIg
YLVaN57mfr8fi8WCIAg7mi9+7gTQbbtD1xWNdLHGv5yd57/74kHsFnHjybruPy+my0yvFJgY
COCwSvhdNt6/vkJ/yMVQ2M0nU0meGg7w5qU433+xJSxF0zkzuYrfZePSXIZTB1ujhs9pJZGv
ki7W2R/zomo6b16K870XRrdc2/vXVxiOevC7rLxxYZFvPzuM3Sqjqip11WB2tUTEZ8djt/Cr
C4sc6PMxkyjy3bs+q6FolGpN/vmTOSYGArx8h8j24h6u89blJQYCdoJ2g1KpRKlUQlVV3rkS
57UjfbjdLhJlHZvTjWyxMR7zb3Kbnojt0bstG3Q1XyWeqeB1WtkX820c7vCL80scHgzQ43fg
sMroukGp1mQ5VyUWcLKYLnN4MEBD0VjN1xiJuJBlmdV8ldO3Vhnr8ZIrN/hkKsn//PXDSIKA
0y7zow+m2R/zMRBy0+Nr/fjVZssVuvN5d3UhS7bc4OhggKDHzn986yYH+/28PNHLf3lnkkK1
ydeOD3B1McsP1kT3//ziKr93YpB6UyPkthHw2DdqDO63PbphtLJU3WsjR6mm0FA0wl4752eS
jMf8m1KndV2nUqlQKpV469Mp7JJB0GVBkkSux4t89cQYgUAAr9e7MQHd66c5wOX5DM2myrP7
H0FBTL1aolhtVR6pqoLf7/+dFMDd6HorHv7xZJLhqIdLcxm+dnwAl91CsdqkXG91lHJdQdV0
FtJlXjkU27CVrzRYzlbxu6z0BV00FI1cucFbV+J848QQl+czvHY4hiAI6LrOjz+coaHqfPlY
P6liDYdV5tBAgOVshb9+b4ovHOnjyGAAiyRilVtuRaZY5d+/cYP/7Q+O47S1RPX9F0ZZWEtz
VjWDZKFGLOAk4nVQaSg41qI+oihSrinUFHUjBJoq1vjNpTh/8mrr4I4bSzkEAUbDTq7PLqM2
aliMJsVqHYdF4vStJM/s72N8IEq2IVJVBfwuOwNhFw6rvMUFupNCtYmq6dtOmNv9vVRNR9O0
Lanh96ItAei6xupqikoxg2j3MzIY25OKsN24QLuxVWmoOCzifdt8PJmkqRm8OtHD+te6syLs
w5sJFM3g6ZEQumGQyNc4PNCa4NYVjUJVocdn56dn5vj94/2cmU7T63dwaMDPBzdX8TmtHB7w
8/5aGsPrR2KcmUpxcjxMQ9FwWiWaqs6F2QyyJJCvNFE1Ax14bjyMKAgtV2oqxe89M4BNFnn7
2gojYRc6AuM9rclnU9W3PRap2lT5r6dnCXlsfOvE4Mb3WspUKNcVJvr9GIbBzflVVlJZYm6B
RqPBe9eXeWFfBIfdhiFZuZVW+dqJMd66tsqhgQCFapMX9ke2hJN/fTnO5HKRP3ttfEvwYJ35
VImmqm9M6m8s5akrGs+Mhqg1FK4tFXh2PLzDX7m9ftHWo7BayhOPr9A/NIjaqH3ujkh698IS
rx3qwe9u/RC6bjC1UmB/n2/jhxuMePjtlTgvHuhBNwwuzmaI+uzs6/UiiiKiKHFjPk2u0sQi
i+i6wbXFPN95foRyXSNbbqDqBh6HFUEU2N/n591ry5ydSfOtZ4f5T7+9iddpo9bUmE2WsFnk
tYm0wbXFLH/2hf387fvTeJ1Wvv70ICGPneVshXylSbbSJF9pMrta4g9fGsNmkdANg0pD5e/P
zOO2W/hff/8IM4kiq/kaLx/a6te7JYmRqIdD/QFqjSYfX1/AK2vYRZVffjpP5mCUpWwV0WLj
5aMjuD1eRNnK8IEjSKLA5HKB/oADwdPgo5kcf/TKfjRdxzBabpNmGJtW17/+zBCHB8ut+dMd
0ZpyXWE+VaLaUHluX5RPZ1LUVQO33cKhtdQNWRIRFI1YoOVK3u2W3QtVVbm+VEAzDJ4Zvb9w
pL/4i7/4i512IKvdSV9fDI/Lic/nQ2BtOfkOtd39752w23rRdm0d7PcjiwKCIFJptOLU71xb
wSqLnL6VYClT4cRYhGdGw1hkkV+eX6Q/5GQ1X2U44kEQBD64keDoUJBnxsJcmE2TLTXoC7pa
q6gYjPf6+HQmzUe3VnFYZQ70+zkzlSLssXNlPsuRwVZU5vJChuPDYTxOKxP9fg4PBHh2X4SZ
RJFYwEks4OQ3l+OcGIvgcViZXClwfCTEu9eWeWo4yEyiuLY7mkCh2uTF/RF0o3WYnW7AyfEI
dUUjU6wxtZjk/I1ZiplVVleWKedS/P3bF6BZpaHolDQLLzx1kKroIlG3sn90iK8+N0GirHM9
XsLnslGoKrx/fYV9MR8eu0ym3KSp6rjtFrxOK6IoML1SYClT2ZRGXa4rfHAjwbHhIH/z/jRH
hwKIgsA/npnl5Yle+gIuRFFA0w2cVhmrLCGKAuJGBq1BuaHid9koVBt8cCPB/r77b32i6zoR
n5MenwNxbbfpNy4uMbFNDlJXTIIfdxRIR+BnZ+f54akxkoUaf//RbfbHfLx6qJcffziDqhn8
D1+Z4IMbCYrVJr/3TGvBKV9t8sH1BM+MhfE4LFxdyPL0aBibReLcdIrL8xn+/PUDLKbLrSG9
14MoSUyvFPA5rRRrCvt6vbxzdZm6oq0Vpit8/8VR3ry0yPP7onw8uUq+0iTgtvH8/igOq0y5
rnArnmei34/TJjO9UsAqS9xYyvFvvzyBYRhUq1Uuzaywkszw6a0lnt8XZiFVwu2w4vN6WCnr
RIJB9g+E8LvsrBaqPDse5tpCjr6Qm6jPQaWucGkuw0sTvcSzFXLlVirB//J7RzY2xppLlhgI
Onj/5morDXytw75/fYWXJ3r52/en+d6LI5ybTmGzSJwYC9NUdBxWEVU3UDRj0xO8XFewSOI9
c7JypRqTK8VNRT7OB1Sa3T1v0A0DTTOwbOMSdoUAOjkJvrGUw2GVifoc/NW7k6zma7hsMv/7
d47TUDQWM2XOz6T45skhNAPOTacQ1jIli9UmsYCTty7H+f0TgwyG3ZyfSbOYKXMznufbJwd5
eizK6ZsJ5pIlZlaLfOPEEPOpMsvZCgMhFwG3jYn+AH/3/hRepxVBaO0xJIoCYY+dZKHGP30y
x5++tp/5ZJErt1c4OezGI2lkixU+vpXgS8f6sFgsKKKNT+fLREJ+Tk30EXTbsFtlljJlLs9n
+cpT/fz0o1lePdzLjaU82VKNP3xpHN1oTR7vzE69ONsqmK81NKI+BwYGdUXjzGSSrzzVh/2O
SeaNpRxXF7J8/8UxNF3nvWutcLDDKreEXlc4PhKkXFf5xflFbJZWCnkiVyVdaj77y94AABYS
SURBVHAg5uOZse1dFVVV+dXFOIcHAlyYTVNpqHzjxCBh771z/dvpT12xErxX1JsakiRQqSvM
JUs8PRpmOVvh/RsJXp7oWVtub/JvXtu/0Wa9KurGUo5Mqc6BPh8H+z5btR2JeLDLEtWGhqrr
7Iv5+Ms3r/ODU2O8dLCHH304Q2/ASaWhspAqc20xy9efGaSp6pydSXNrpchI1LuxyJYpNUgW
anzt6YFWrn6xTq7S4PhoiFy5yaW5NIlMEbVRJeqEYqnMmN/O+6fPEAu6sKgNfK4IYwM9FGoa
qqefZ470oWkaOgLPPSUzlyzxj2dmOToU5AtH+gi4bFTqClZZQtMNol4HkcMO/sNvbqBqBgvp
Mtlyg+MjIX51YZGvPT3A06Nhzk4nuRXP86dfaI1q52+nOX87zakDkU0CONDX2pGtlWckMRz1
MN7jvcONaT0ovU4rf/TKOJpmIIpgt8gMhXV6/E7+4eNZvv/iZ2sVPz83zwsHotxeKXBsOMg7
V5c5dbCHXKVx386/zidTSQZCLj6ZTm45HvZO2poDbMdezAFUVd3VxHndlq4bpIp1plby1Joq
PqcNSRLx2C2kinUEAYYjHkajXn57JY5FEjee4vWmyk9O3+bZfRFOjkUo1Vr5NLPJIvlyg2Sh
vlEmeHY6xcmxCFcWssSCTqYTRS7NZijVFM7fTpMu1vmfvnYYr9PKaNTL8eEgVxdzXLidZiTi
Ieixky01UFSdty4tMhywcObqDJVckmuTt7k1M4dRK1Atl+gNuphMq7z09AQvPzNBVXRjcQW4
uFwnFgkwm6rys7PzxIIuzs2kcNlk5lJl+oNuri1mmU+WGevxIksiH91aJepzMBh2k682WcyU
GQy5CXvthDx2Ql4HPpeVQrXJR7cSWC0S/UEXV+Yy2KwSl+eznDrYQ6+/tW9/aG1kqTSUjcXB
9c4ez7TSMcJeO7puMJ8qb9RNCIKAKAgsZyu8e22F8V4vAyE3K/kaz41HkESBxXSZdLGOLIkE
3TZO31rFZpHY1+tlf8zPYNjNu9eWGY64t7hBZ6eSBNzWVgWeIBBw2TjUv/0u2O9eW2Yk6ukO
AeymzZ3tEvkaf/PuFF861s9A2I3VIuF1tGLfVxeyvHakD5tFQkCg1lCYXC5QbarEAk6uLuTI
VxoMht1cX8qRKtY4fWuV7z4/ytWFLAat2tqplQIH+wP85PRtynWVeKbCSNTDv3plHFEQcNlb
sfp/OTfPzXie2dUSC+kS84kc3zwe4dNr08zOznPpxjTp5CpGo0Svz4pssfOl5w6zXLPyyokJ
RocHcXgC7B+O8UevTjAS9fLTj1oCTeSrDIRcXFvI0eN38GdfOMBCusxcsozbYWGsx0utqfLL
84v88av7mOgPkCrUWlGftZEuX2nisluIBV34nK30guVclb99b4qoz8GBPh/HR1ruyGiPl7Fe
LxN9fn5zaak1Z6m3imEW0xXOz6ZbnZtW7fN8qoTTJhNwt1IvyvXWg8TrtPLzs/McHgwiCAIz
iQKHBwJEvA5WCzWW1/KHoHXai9Mmsz/mw2mTOTro5/StJK8d7tsQWVPVCHnsCIKwSQy6YeC0
WZBECLjtNFUdu0Wi0lCR1rZ+WU9XWf+MrhDAw0SBFtIV+oMuJFEgV2nSF3LRVDTevLTEaNTD
vpiP2WSJD66vIIoCXkdrH5xSrRWdODEeZi5Z5sObCa4vZpElCadNZjFdptJQWc3XODYc4vpS
nvm1HcfG1mLtAbeNgaALEYPhgIWp2SUquSQfX7xFMZdkOb5CqVxiNlnmD14+gj/cw76xYZz+
MC8c28/+4T5eOTaC3+3gykKWeKbCYrrMD06NcXw4xPs3ErgdFnLlJifHw0z0B1jKVJhaKfLF
o/3UFY2lTIWmpvPUUIBCTcEmSxzs9/P22kT7jYutlGbP2pYnUa+D2WSJv3pnktGoB4ssspCu
MBr1EAu4EAVhY59QAYFffDpPodbk5UO9DARd5MoNCtUmA2sjiEBraxinTcZpkxmOejYWtCyS
iKYbRHwO9vV6SeSr6HpLWG67hWJV4czUKl+841C80zcThL32jTWDUq3JyX2tdPJzMyl+/OEM
3zgxhCgKNFWNWlPDKkvUmiq9fudaaLrVn96+sgyszWd8DhbS5Y1CpfVr7AoBPIwLdGu5QNBj
Y6zXy7mZFDfjObwOC9OJIol8Da/Tyl+9M0m1qSIIAouZMolcletLOUajXs7fTrM/5uNGPI/f
bePUwR6mV4r4nDaqTRWXzcKluQxWWeS5ET/pTIagXGdlOc7VW7dZXFqikMvwxvk5losqRw6M
8szhffiCUQb6+1ipSch2Jx6XkzcuxWmqOmGvg7euxGkoGoLQOvxCFgVkSWxFeRJF3r+RoKlo
LOeqPLcvys/OzlFtqrx3bZk/eXU/s8kip2+u4rTJxDMVZFkkFnBRabRcwES+SnZtC5Sby3ls
FomZlSIOm8yt5TwjEQ/HhoJ8PJmk2lCpNFR+8tFtLGsuU01RW3n9pQayKPD+jQSrhSqfTKV4
YX8Eiyzxn9+ZxLLmanocVhStFRZdT7z75flFyg2FM5OrJAs1dOD96wmCLhvpYp2+oGvLFvC1
hkq23GAg1HJ1zt9OMxzxYLVIvHdthT97/QCyJPDe9RVqa6fmGIZBrakSXNtKZl0A+2I+gh47
+2I+7FZ5S5UedIkAHtRG1XT+5v0pjq9VCn08uUqp1iTssTMU8WCVJRRN5799Ok+5pm4csBbP
Vrg8l+HYcJCmqnN9Kcc3TwwS9TtZylaYT5Xo8Ttw2izMrhY5MRYmkauQSGVJp5PEFxfJZ1ZJ
JRLo1TzJTJ5kscGhsUFkd5CmxUMo0stMQUCye3C73YhS6wl8dSFLf8hJf8jFQMjNxbkMPT4H
3zg5zKW5NCfGwnxwI8HBfj/TKwUuzWX51rPDzCSKrORr2GUJWRZ55VCMX5xfaD3pVZ1yTWE5
V6XWVEmXGuQqDaI+B42mxttXl1nKVOgNODk8GCAWcBH1OQh57NxOFFE0nXevr/D8vigRn4N0
qc5TIyFuLOXJlOqcOtiLTZY4PBRgKOzhr96d5KnhEK8ejnF0MIgkCnz1+AABl5UffXibcl3h
z18/iMMq819PzzAS9XBxLsNAyEWppuCyy4z3erm2kOPIYICjQ0GuLeRaBT9WadsajOzaJmO9
ASe/ubzEH788xs/PLXB4IMBTI6HWyCQIKKrORL+f3oCTgNu20fmhPY+iKwRwrws+M7lKsaoQ
9Tk4PBBEFATeu75MqaaQKdfZH/MhCCL5SoN//8Z1Am4b8UwFu0XiW88Oc3I8zFDYjWG04s3Z
UquzvHFxibBLIplKQz2PVSmQXF2hlEsz4DboCzjw+7yIzgCi04/dF+bogTGWyiJDsQg9AQ8f
3ExQb2qcHI9weDDAgZif+XSZfKWBoulkSg3cdpmldJW5VIl8pYFhtCJLN+MFnhoOIYoC//zJ
HMlinUP9AaYTRZYyFUIeG997cRRdb4Uea02VVLGO32XDbpWwWyRmV0s4rXJrlMi2FrRqTZWo
z0m5rvDbK3HmUiUCLhsnxyLcWs6vPS3h3HSSVw7F+MeP58iU6lTqCqWa2lpQOxClP+TmnavL
qJqBy95yayyySNBjZ3qlwM/OzXPqQC8+p5WxXi8uu4UzU6vsj/l5+VAv6WKNUl1hf58fBIGI
z85o1IMoihweDG4aJe4m4nXw5qVFjg6FeHY8AobBUyPhLRPe9TlAO/1pO7pCAIqibBu3jQWc
aLrBhzcTXJ7P0Btw8t8+XcDntBJ02/G7bcynyvyH39wk6nfw6qEYgbXIgW4YXF/IcvbmAu9f
mOTarWnSyQQrKysc75F599Isf/bFQ2QVC7NFmWhPjBOH9/FpvIlucXI1XmE46iVdbPDCgSiT
y638lD94bpg3LixikUUkQeTwYIDTN1s7vy2ky9SaraJyqywynSjytacHOX87zWjUw1DYw8eT
q4z2eLkyn6VQaVJpqggCvHSwl+tLOZqazr/70kEWUmXmUqVW9uXtNP/9Fw/S63cSz1bIlhuU
6yrPjIZpqjrfem6YQ/0+vvzUAIZhcLDfT0PRyFeb3FjKMxr1MJcqcWI8wlDYjSyJRH0Onh0P
0xtwcmQohKrpfPX4AH/3wTTjvT4ODwSwyK14veeOLRMDbjuKonF5IcvrR/twr712cixCj9+B
LIr4XJ+VQsprO2R8lrry4N3hDg+0Rpv15MBHOafs2oWwM5OreBxW9sd8/F//cpmnhoMMht2k
i3V6Aw5+cvo2vX5ny9+Pp6lXy+TzBSRDoVBp4HFY0AyBI2MxesJBVsoG8WwNl8OCwyrz7WeH
qdRVfvzhDIIAmm7wvRdGGY641/xLldnVEt9/cZTJ5QIXZ9N4HFaODQc5M7VKU9XBaJ1pq2it
vyM+O+W6unHUUSzgxLm2yLZaqCKKAvOpMkNhdysub5EwDIOXDvbyj2dmCbntPDMWYn/MR7mu
8u61ZWIBJy67hVcPx3j32jK/vRLn5YleilWFSkMhV27Q43NQqin8+RcPkim1ClzeuLCIbhjE
Ak5mkyWGI27i2Sr7e71MDAQwDChW63gcVv7xzBzP7otwaS5DU9X5vWcGt823ub1aZDTqIVOs
YSAQ2cHGU3f2k0d1PsDDtOm4AHTd4L3rK7x+dPPOCppuIABTKwU+mUoSclv45MYixWKBfSEr
N5YylGutkF5dE7HYXdidbrweN7Vm62YbhoHPZaVcVwi57awWaggCCAg8PRpiIVWmUGuiqDqC
0DoHyyqLFKrNjfTmA31+ZhKto498Tiurherad21d4/o5WyNRD8VaS3y1ptbywwf8xLNVBsNu
mqpGplSnWFUYCLvo8Tn40QczfOFIjCODQf7fN64xEvVSqjWpNlSifgffe34URdN5+0qc14/1
c3Uhi0CryuqbJ4dYzlWZSRQp1xW+dWIQSZI4N5Pi2HBwLWmuyL6Yj6VMhYjXTrWhEnDbiPoc
lOsKb11a5NvPjSCKLTcyXawz2uO554a3715bbhXOGHpH9wbdyzYdF4Cq6fyXdyb5d3fktOTy
eX789lU0pUGmVCNbauCwW7E5nNgcbuqGhfG+AIuZCs/vi/Lp7XQrBBdxcyteoLbmVhgGOKwS
um6wr8/HtYXWFoOC0DoS6MhgkPO3Uxu7jzmsMh6HhdTaTmqSJBD1OlqjiW6wkq/ic1hJ5Gvo
hsFQ2M2x4SAvT/Tym8tLOKwyV+azHBsOcrDfz68vLuK0WYj4HBwfCXFuOklT1Tk6FKQ/6OLq
YhaHVWZfrxdVN/inM7NcX8zx+tG+TdstVhsqPzs7h02W+P0Tg9itMn/73hQ/ODW28R5VVWlq
rU56Yiy8qWj9vesrvHgguqVG+M6CmFJN4Z2rcb793MiDf7MOb467l206IgBFUTaq+rO5PP/x
rRv82y8eQBAEbiaqXFmu8tLRUcIBD+9eT5Bf24lMEgV03djIlzk7k7rnzm42WaSh6jw7HuHT
25vf11pPEXhqJEgiV8Uii7hsFsZ7vWRKdeaSJSI+B988OUS5pnJuJsmL+6PMpcocHwmRLLQK
3y/NZejxOxjt2f40kqvzGUJe+8bRQ/OpEmenU/zwVCstotZQeePi4ka5omEYKKqGLIlb5lWa
bmzaoFfV9A0/GXbfKe9VEXY/nlgB5FIJllJF+nrDNBsNYrHYPQVgGAaVSoVisbixfcV6aaHF
YvlsjxaXm//zHy7xf/zr5xEEgTcuLPLWldZ+lKLAlr0hBVoFHHaL1OoEkoDTZkHVdHwuK3aL
hMdhRRSg1+9kPlUiWWgtZr1+tI+FZJG6orOYqfDigShu+1qxNWysNOpGK7YsiSK6YaBr+lqK
7qPvKHt1HtlOMAXQZjJcpaHQ43GwmlzGZg+g6zq6rpPJZMjn8+Tz+Y2tKwBcLhcej4dYLIbL
5dqY1a8LRtd1dAMGQ04URUEURZ4bD7GQLvHKRA+GYXBuJo1FEslWmrx2qIegx44sCnjsrZTY
bLmBRRLRDZClz1Z6jbVOfOpAZK1gw0AwdPoDdqpNDZ9TxmUV0TW1lU9kGKiqsamtsfZ363u2
nrbrUa7199zvb1VVN6Ifd1aV3e/v9QiGpmkb/79+T+/3t6IoG7Z28v71h9H6de7k/TuxtS6m
u/821gqn7vWeOx+kd/7dbH62D+m93nP334IgoKrqjt7f1ghQKWRZSheJRUIoSpNgKISmqiws
LODz+fB6vRtVWu0o/fNQEwyP56lsjgAPb+uRjQAuX5CDvs1bAgqCwNhYy6dd75Tdutenicnd
dMXmuOvDvYnJ46YrBLCbRDgTk72gKwRgYtIpukIApgtk0im6QgCmC2TSKR66KL6h6aSLa6eN
GAbNeg2ro73zdOuVEnbXzrfTBjB0DVVRsNh2dp7uOo1qBZuzveM/dVVF1zVk670PXN4rW5rS
BEFAkts7N3k3ttRmHVGSEaX2usFubCn1GrLVhtBmyHU3ttpp89ACSFYa/PT6PACaqpBbnCc8
uq+tz1iduknP/om22jRrVSqZFIGB4Qe/+SFt1Qp5lHoNb0/skdsqp5MIooQrGHrktgorcWwe
D3b39qkce2krszCLtyfW9gNrN7baafPQuUBzuTI/vT4HbN5Dsx3WVxXbbWPaMm09bJs92xfI
0JpkV5J4/D50Q0Vy+LbdiWtzG4XU9BSe3gEEyUC0uTdOK7kflXQC0eFFNFQ0VcPpDzywjd6s
kZqfxx3qQbIISA7vA68PoLgyjybYcbodaKqO07+zIz4LS3PYfCEMNCxO7z1Pmt/UJj4LVg92
h3XHtnSlTnpxCW84ioGG1eVD2oGt3MIUmmDHE/CiqcaObCnVItl4Am9PL4ahYff4N+39c29b
01i8USyygaaC0/+ArQ2VOoV0FpfHQT5dwBsOoasKDl/gvh07szBLINZHPpXB5fNgqAoWz/bb
oqyzJ5NgrVGhXGgVZjeLGVLxBPIOOpdSWMXRN0Jh7haJxTiWexzpczd2TwC1USV16wKasDO/
XLDYcHjcNPNJksuJHXVIAIvdQaNSZvXGeXR5Z8O3Wi1QyWWpZlOkV1bvmV9/N41KBUPXSVw9
B9adFZtU08soDYVKeoXsanrHaQ3enhgWu5Ply2cR7Tvzl5VqiUalTDkVJ5/K7Pgpq9SqFBPL
LF08g+x0P/D9gmxDFKFaKGOzyeTjM1SL9Qfas9hsCFJrX6B6Pk02keJB+twTAYhWJy6PnUIi
jqLJ+EM+lOaDQ5uyy0dxfgpHqJ9gJECzqT6wDUAls0Ipk8U/PIFW29lxnGo5QyGVQ7J78QV9
KMrObDUqZQRRJDhyEK2c31EbTdXQlAaGaMPr96Du8DR6m8uFUq8TGp9AKe3se9l8QURUBJsH
t9eJtsNT3GulCp5QkPC+CRrFnX0vQZSQLTKyK4DL7djx4YY2lxuHP0h0/yFqhQfb0ptVCitx
dF2jXCjjjgwgyzr399Z1ysk4xVSCQmIJDRsevwtNu7+Hv6dzABOTzxtdsQ5gYtIpTAGYPNGY
AjB5ojEFYPLkoVa4/cnHFFIZUwAmTx6G1kCwOMjOXuP/B4nqSrEHX+2tAAAAAElFTkSuQmCC
</thumbnail>
<thumbnail height='192' name='Sheet 3' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO29eZBd133n9zn33rfvr1/vABqNhQAIbiApUqQocihaJLWMZNmJ5ZmyPXHN
YqcSexInqYxTTkZjj6fkcSp2JrOU7ZkkMxlP2XKNLMkWJVFcxFWkuIDgAhD70svb9/3d5eSP
+9CvwW4sDXQDRL/zqerqV7937zm/e879nv2cJ6SUEoViSNFutAMKxY3kmgVgmiadTmc9fFEo
rjvrUgOoVpTiZkU1gRRDjRKAYqhRAlAMNcb5D/V6/ara8rZtY9s2pmmuq2MKxfVAXOs8gGma
WJZFIBBYL58UiuuGagIphholAMVQowSgGGqUABRDjRKAYqhRAlAMNUoAiqFGCUAx1CgBKIYa
JQDFUKMEoBhqjMtfMqBWzHJ6sUAiOYJX2KQmpjbKL4XiurAmATi2hWWZ1KslhO5jfBK6to3j
OFiWtVE+KhQbxpoE4AuGCQVbjI6N4dUcLAd0XUdKiWGsKSiF4mOBWg6tGGpUJ1gx1CgBKIYa
JQDFUKMEoBhqlAAUQ40SgGKoUQJQDDVKAIqhRglAMdQoASiGGiUAxVCjBKAYatYkACkltVoN
07KwLRNH/TCG4iZnTWuYK7l5Fso9IgEPlmWxfXYWKSVSShzH2SgfFYoNY4UAOo0yL770GsLw
cv/DjxD1DS5xHIdOo4ptBQj4vID6eSTFzc0KAfjDcXZtn+bwyYUVFycntiJ8EcKRKBpuia9p
Go7joGmqO6G4+VilCWRhmuD1+jE0ccE3Qmgkk8kLbI69ke4pFBvLKsW2B9OscOLwCdqmersV
m5sVApCOhSVCPPq5R4j51T5fxeZmhQByJ45Q6TaZm6/dCH8UiuvKiiI+uW0HU3IekjqOGuBR
bHJW1AAef4iIT/L2ofexlAIUm5xVxy4ddCZTCXpqckuxyVlVAKVilmOHj+PYqgZQbG5WHIxV
mp9HH53Aj43X60UIcbF7AXUwluLmZkUnuNus8t7J00S8fg584m78hn4j/FIorgsragDbMqk3
moAgEouiqxpAsYlZ0Qfoteu89+67vPvuB/Rs1QlWbG5WCEDTDcx2hbffepeuEoBik7NCAL5g
lJmZ7UyMxGGV939xbo5ao0m9VlHzBIqbnlWPR0+fO0M4NUk4cOEoULtR4ejRc4QTAUxLZ+/u
WbrdLrZt4/P5rqvjCsV6sOpqt2Zlke899xN+9ue/QszvWbL3uj163SZ4Rol5TfUDGYqbnlXf
Wqnr2O0uH60bYiNj3Pfg2AU2U3UTFDcxqwogHh/njnu9BL1qDkCxuVlVAOVSgWyujK32+yo2
OStGgaqLp0g3BTGfRle1bxSbnBUCCMZHkJ0G0utXTSDFpkf9SqRiqFFnmSiGGiUAxVCjBKAY
apQAFEONEoBiqFECUAw1SgCKoUYJQDHUrGkNc7dZ4/iZOaLxFF7NIjU+tVF+KRTXhTUJQPd6
iUVjmO0qDVtnfAK6to3jOFiWtVE+KhQbxpoE0K7XqDfbjI6NkdIctSFGcdOj1gIphhrVCVYM
NUoAiqFGCUAx1CgBKIYaJQDFUKMEoBhqlAAUQ82mFICUkrnFNIVi6Ua7AkCn0yWTy3ONUy7X
Fdu2+fD4SRYzWZqtFs5N5Pta2HTTt1JK3nznPZ7+0YsYhsETjz7Mnfv3XfaXbjaKbq/Hn3/7
r5lbSPPoQw/wyXsPoGsf33JHSsmZuXmee+lVcoUSApBIgoEAqWSC0ZER7r7zNkYS8RuWpuvJ
DZ8JllLSbLWZX0yzdXqKUPDqZ5Rt2+aZF1/h4Hsf8PmfepRur8dzL77KrtkZnnzsEULB4FWH
fTVYts03//r7FIolHrj3bp596VW2TU/xhccfvWJfHMfBsm28Hs/lL74GpJQUSmWef/nHnDxz
ljtu3cenP3kvhmFQqzfIF0sUiiXmFtKkszkevO8ePnnPXXg22K+N5oYIwLIscoUiJ8+c4+Tp
s2RyeRAQCgb5m48/xszW6TWXLp1Ol29972nSmRz/xZc+z9bpSQByhSLf+f4zNFst/ubjjzE7
s/WiYTtSYls2pmkihMDv9616rW3bNFtt8sUiuq4zs2Wlv47j8NQzz3Pi9Fl+6ed+hmQiTrFU
5ltPPU270+GnP/8405MTCCGQUtLpdqnW6hRLZcqVKuVqjXKlSqVWwzRNdu+c5fa9e9gyPYln
HdddSSmpVGu89tZBDr1/hJmt03zm0w8yPpq6aBp9eOwEP3zhZXw+H08++vAV5Zdt2+QKRULB
INFIeN38v1auqwC63R4H3/+AN94+RKPZYmx0hJ3bZ9g1O0MiHueV19/grXc/4L4Dd/DwA/dd
UeniOA6lcoVvfvcHSCQ/96UvkIjHPuKjxQs/fp033j5EIh7DYxhouoamaWhCw7ZtOr0uva6J
ZVt0ez2E0AgFA0TDYaKRMJFIGMuyKBRLFEplWq02hsfAtmy2b9vCww/cz9TE2NIL/fzLP+at
Q+/zC//lTzM5PjhQuNczeebFl3n38FH279lFu9OlUCxRbzRxHIdgIEA8FiURj5GIRYnHY5im
yYnTZzl1do6A38fe3TvZv2c346MpDMO4qqaIlJJ0Ns/rbx/k6PFTjKVGeOTB+9mxfdsVhddu
d/jRq6/xzvuHuW3vLdy2dw+JeIxAwI/X40EIgWlZpDM5Pjx+gmMnT1Op1TAMD7t3bOeu225l
ZsvUZRdROo4kXyxy6IMjdLtdIuEw4VCISNj9C4eCeD1ePB4DTdPWlBaO46xNAFI6tNod/D4f
IBGajm1ZWJaFx+Phe8++QCwaYfvWacZGU/j6vzLZ6XR5+733ef2td9A0jfvvuYtbb9lNJBy6
wGEpJafOnuO7Tz9PMOjni48/xlhqBNtxcGwH23GwbYtCsUw6m2MxmyOby1Ot1dmxfRtf/txn
Cfj9F/V/biFNNp93w1v2p2s6Pp8Xv8+Hz+fD7/Ni2Tb1epNavU613qBWr6MJwdhoirHUCKOp
EWKRMJVanRd//BOOnTzN7h3befiB+zh9bo4fvfwaX/3KF5ndtnWVdJS8d+Qo7x85xkgyztjI
CKOpJPFYjGDAj7ZKH0FKSavd4fip07x35CjzC2l8Pi9bp6eY3baV2W1biEYi2I5Nr2fSaDap
N5o0mk0Mw8AwDDz9/61Wi3feP8LcwiKzM1v55D0H2LZlatV4L/0+SOYXMzz70ivkC0V6ponP
6yUcChGNhMkXS7TbHbZMT7Jv9062b9tCpVrn0PuHOX7qDMFggNv37WHb9BSxWISAP4DXY6Dr
Oq12myPHTnDogw/J5gtMjo8Sj8Vot9vUG02arRY908S2bAzDwO/zEQz6CYfCBAN+fF4vXq+n
/9/bF6SJaVr0TBOzZzKfzqxNAKXsPOlSHV334dFh++wstuXWAF6fj1d/8hbHT50mXyihaRoT
46MkYjGOnzqNrus8+Im7uePWfRiGfkmlttodfvDcCxw7dYZwMIBl25iWhWXZOI77wKlkgsnx
MSbGxpiaGGN0JIkQYilcKeWqn9eT5eEuZnK89NpPOH1uHikdfvrzT7Bv984Ni6/RbDK/mOH0
uTlOnZ2jVm8Q8PuwLIueaaHrGobuloo+rwfTtLBsyx2JEoK9u3Zy/913MpoauaL4LpeepmXR
aDapVOuUyhUq1SqjI0l2zs6s2t9ptdocPnaCQ+8fplSpYtkWQmgE/G4hVKvXCfj93L5vD7ft
vYXUSHKFb51ul063R6vVpt5o9AXfotVu0+116fUser0e3Z571L/H48FjGHi9HrweD4l4bG0C
KKbnqLRN2h0Tj8dg184dWGYPy7Lw90teKSU90ySbK3Bmbp50Ls/eXTu49ZbdeDxudec4zlJp
c7GEdaTk3PwinU4Hr9e7pGiPxyDoD+D1elbesyzci32+VKYCS02Y858v6eMqcSxmcrQ7bXZu
n7ku8Z3/XG80yRdLBAN+gsEgfp93qSmyPA4pJY6U6MuaC2tNw0ul52rPdKnncxwHKSXtTpdW
232Ra/UGiXiMrdNT6Jq25jS8XHzLn2NtTSDHplSuEo1GEDige5G2pfYDKG5abvgwqEJxI/n4
zsgoFNeBpTGoer1+VVP1tm1j2+7YuUJxs6GaQIqh5oqmFB2zy8lTJzB8YZrNDqlUEpyeOhdI
cdNzRQLQDINgMEog6KdRb1Au5ZGaT50LpLjpuSIBmJ021Xod3ePB4/UwOjaBR1jqXCDFTY/q
AyiGGjUMqhhqlAAUQ40SgGKoUQJQDDVKAIqhRglAMdQoASiGGiUAxVCjBKAYapQAFEONEoBi
qLkyAUhJo17Htm0azaa7CcayNu15kYrh4cr2A1gmpfwitaaN5tEQmgevLtg+O4uU0j1pwHE2
2leFYt25IgFIx6Jl6YzEfTRNm27Xxha6+92y4zYUipuNKxKA0A1i4SDReAJfp0MkEkbgvvCa
prmnq+n6hjqqUGwEaj+AYqhRo0CKoUYJQDHUKAEohholAMVQowSgGGqUABRDjRKAYqhRAlAM
NUoAiqFGCUAx1CgBKIaaVQVQzs/x3vvH6Zg2ANI2OXbiFK16mQ8OHyWXL5LPZrActQJUcXOz
6mrQYj7N6y8fY9uu7fg9OkL3EAkFkI77azClYg5HeEmNqePRFTc3qwjA4uTxNDOzE5xfJ+qY
XQr5HDI1isejk0yN4RG2Oh5dcdOzylurs2PnVk6n6/g8bgtJ8/i4/Y47AZj6yI/CmGojmOIm
ZpU+gABNkJ+fp6vebsUmZ4UAuvUi89kK09tnMHRxI3xSKK4bKwRQyeZoWx1OnV5EF0oAis3N
qlsibdtGAFLTLisCtSVScTOz6jxA+vRh/vTP/pKOpfoAis3NqgJotdt4pKRnKwEoNjcrBODY
NoFIklDQizroRLHZWTEPkD1+hGOFGuNbtuI11FIhxeZmhQACsST3zOwm7NHRdSUAxeZmxRse
n5zCquQ4evKMWuym2PSsWsRblkkxl+HI0ZPX2x+F4rqy+ihQo8y5U2m275x1DVJi2zZSSizL
6p8I7agDcRU3PSsXw0lJdGSKrVtqnF8JIR2LI0dPsiUV4Uy6SDAcwytstm6fVadDb1okzuFv
oe18DHzRG+3MhrFCAJWFM2QrLQrVOj3LIeQFNINELIppWoyMJCiXa9heP0KA4zg4joNt2zfA
fcWGUZ3DeffPcByJ2PflG+3NhrFCAMF4lMyxM0SjEQJe92tpm3TaDYKpCfR2iz237EbDxlb7
ATYtduYgCA156hmM/T+N0DbnrNCqa4HOm8QVLIZTa4E2H1JKrB/+FmJsH86JZzDu/1W0rZ+8
0W5tCKt2goUQV/TyKzYp7TKydBJt5iG02Uewj/1g0/bx1EyXYgXO4tsQTCHiM+i7n0DmDiOr
czfarQ1BCUBxAVJKnIU30abvcVsBkUnE5B04x74Pm7AW+FgIQDoW5gtfxymeWL8wrS7SUSNT
a8ZqI3OH0abvAdzmsL77SZyzLyN7zRvs3Prz8RDA4kHk4tvI9DvrE56UWC/+c6xX/08lgjUi
s++DZiBG9y3ZxOQB8MdwTv/oxjm2Qdx4AUiJffS7YPhx8kfWp5qtLSCz7yOz72Mf/P82bQdu
I3Dm30SbvBOhe5ZsQtPQdz+BfeKHm65AueECcEqnkMXj6Hf8PLJ0Bml1rzFEiX3qecToXoxH
/hHOqedxjnxHieAKkLaJkzmEmL53xXfa7CPu6FDm0A3wbOO48QI49j3ExF1oM58Cu4uszV9T
eNK2cM68hLbzM2ipWzAe/HXs9/8C58yLSgSXQZZOQq+JNnHHiu+EL4I28xD2se9vqnS8oQKQ
zQLO3Gvoez6P8EUR0Wlk/sNrC3PxbbBNtK33A6BN34N+zy9jv/Fv162PsVlxFt5CpPYgfJFV
v9d2P+42LXMfbJoRoRu6fsE+8UNEbCtidC8IgRjdh5P/EH3vF68qPCkl9qnn0GYeRBj+Jbu+
4zPQrmC9+i/Qdj0GZgfZrUKnimyXEd4wYmw/2uheRHIHBOIIccMrx+uKdGzk4ttoO3/qotdo
8Rm03U9ivfT76J/4+2jbPnXTT5jeMAFIs41z8ln0A7+0tM5EG92LdfDfI+0eQveuPdBWAZl5
D/2nfvtCuxBo+7+CtE1k+ZRb24TGECO7wBuBThWncBTrzItgthDhMURyJyI+g4hvQ0SnwR9D
aNc/uaRjQSOHiE5d/uJroZFF1tNoUwcufo0Q6Ad+AREew/7JH0E9g3brV67LOiEn+z54AmjJ
nesa7ppy1Oy2OHV2gcnJKQzh4A2Grzpi5+zLoHuWmiqA+0J2atDIQWzL2sM8/SIiugWxSiIJ
oWHc+fMXvVenP3dQzyALR5GlkzhnX0F+8JdgdcAXGTQNpAPSQUoHbfIAxj3/1Zp9vRKklDiH
v439wTcxHvsaWmr3hsQD/eZPdBoRHr/kdUJo6Lc8iQiPY732L5H1NPq9fw/h2bi1YNJxsN74
E7fgeuyfILT1q53XJIBmvUzPFhRyi3Rtnb27w1d3PLp0cI4+hdjxGDY6nL/XF4NgCit3BBGa
WItrIG2c0y8gdj1xDUuzdYhMu3+zn0EAwuogW0VkdQ7ZrYHQ+n861NM4p57Buv2roHkuG/qa
KZ/COfwtZGIW67V/ifbY74AnuP7x4M7+ism7sa407cZuRzzyW9iv/iHyR/8M8eBvwEX6Dkuc
eQGSOyG6xsKteAyaBWQjh53/EEZuWdv9l2BNAvD5w8heHjuQImxYV308urP4Nk6rhLH7s4iP
3GeN7YXCUYzdn12LaziZIzjtMsbsp1eEeU0YYfCHITmz4itpdTBPPo1WPIY2eedFg5DVeZz0
QbTdT1xx005aHaw3/wRt5kH0u38Z65n/DQ7+P+gP/Pq6t7tlI4tTPI5+4BfR1pJ2I7PIz/4T
rOd+Gw7/Z/R7/+5FfXPKZ7He+neIyQN4Pv0/whqewTr3KmLidoThQx7/PsbYvnVLgzXVJYFw
jDvuvIvd27ewdWY7nqs5PLc/8aVtf2jVnUZidC9O8fiaJlyklDinnkPbci/Cfx13L+k+xPht
OAtvXvIy+8O/wj74H7Ge+x1kdeGyIyhSSuz3/gJpddAP/CLC40d/4NdwFt7GOfXcej6Bmx/H
vo9IzLoDAGtE+OPod/8yzpkXkNXVh7CldLDf+wYitgWZOYRTOXfl7lldnLnX0LY/jLbn88jF
g9DIrNnPi3Hdhzqcyllk9jD6LZ9bVcVa6hZoFqBduvJAuzWchbfQdjy6jp5eHiEE2vS9OAtv
XXRsXJptnPk30e/9uxCIY/7wt7BPPntJgcvcBzjHf4DxiX+A8Lr9LC22Bf3uv4P99r9HruEF
uhyyW8c5/QL63i9e9ciXGL8NMXYb9nt/jpQrTxOU+SPIzLvo9/83iPH9OB/+FXBlw6gycwik
gzZ1ADFyCyI5i33sB+s2DHv9BXD0KcTEHRCdXv2C8AT4oziFY1ce5tlXwR9HjO1fJy+vHG3q
bmiXkJUzq34vM4fcUajtn8b41H+PfuAXsN/5U6xX/sDtW3wkI2WvifXGH6Pt+izaxG2DL4RA
2/Eo2vS9WK/+C6TVWRf/nZPPgi+KmP7EVYchhEC/46vI9CFk7sgF30nHxn73z9G2P4SWmEHf
92WcudeQjewVhW2feQltyycQht+NZ88X3EnNXv2q/V3OuglAOjb26RcvuZRBtis4515xJ74u
0oYTmo42cssVT4jJbg376F+j73j0xmzb88cQI7uQC2+t+rV95mV3abEn4I6g7HwMz+O/C50q
5nf/O6xnv4b1zp/izL+JbFew3/mPCM2DfvtXgQvTSAiBfu/fQzom9tv/4bIzslJKd2TrorVT
B/vE025+6NfWb9ISM2jbH8J+988uqN3kwpvIyjn0/T/jPkN/rsU++tRlw5TdGnLxINr2h5f6
DGLqbvBFcE796Jr8Bbdvtn41gLSx3/sGztHvXuR7iX3iaUR4EjFx+yWDEqN7kfmjq1anFwTp
WFiv/WuEL4a25/NX6/k14TaD7sFZeHNlad6tITOH0GY+feE90SmMz/xjjIf/Z7TJO5CVc1iv
/xvMb//XOKdfRL/vVxEeP6shvEGMB34N5/SPkOmDl/RN5g5jfvtXkZl3V/3eOfuK27zY/ulV
v18bAn3/zyKrczjzr7vx2z2s977hdv5Do+5VQkPf9yWcUy8g2+VLhujMve7W7KN7BrHoHvRb
nnQX5n2ksJW2iX34W1jvfQNpm5cMW0qJ9e6fr58AhO5Fv/NvYR/+NrKRWxmhY+Kc+CHans9d
tq0pRvcg62l3TuAiSCmxP/gmsngC41P/EGH4rvkZrhZt+l5k6fSKfosz/yZ4Ixdk4HmEbqCN
34a+/2fx/I3fxPOVP8J48utXNN6vjexC2/clrDf+7UXX6LtNqT8Cfwzrx//Xig6qtE2cY0+h
73p83cbwRSiFtufz2O9+w+28nn4BuvUVM/ti8gAiPI59/AcXD0xKd03XzIMrJiC17Q+D2R4M
PkiJrC1iPffb2Ee/i3PiGawf/S6ymb9I0BKZfge58Mb69gG0rZ9EjOzCfmflEmTnzMsg5YrS
cDVEdBoMH7J0avULpEQuvIlz5DsYD/y3l5282XCiWyA8jrO8GSQlztmX3TTRLz9HIDTDXWpw
hZNd+v6fQXj82If+08qaR0rsQ/8JoXnwfPZ30SZux3zpf0d2qoNr0geRrSLarosvfbga9D1f
AKuD8+FfYX/wTfRbv7xibZHQdLR9X8Q5/sOLC7iRRRaOoa9SOwlvCG3HozhHn0I6FvbJZzCf
/k3wx/A8+ft4nvw90D2YP/hNt2m57OwqJ38U68Xfw3rxn6Pt+cL6CkBoOvrdfwdn8eAFy2al
dHCOfQ9t12cRxuXHwYXhQyR34FykHyDraazX/w36bT+LNnnXuvl/tQyaQYPRINkqIvMfusO9
GxGn7kX/xK/gnHoemTt8wXcy/Y47snPfryC8Ife/L4z1yh8irZ47LPnhX6PNPoLwx9bXL28I
ff/PYL/3DdA8F11bpG19ALxBtxO+Cs7ZlxGJ2YsOlui7Pus2HZ/5x9jv/Cn6gV/CeOg3EIE4
IpDAePgfoe/5AtYrf4B98D/gLB7Eev53sJ79GsITxHjy9zAO/OL6jwJpsa1oux93h+vsHuDu
MpK1BfTdT1x5OKN7katskJFmG+uVP0CM70f7GB3YpE3f666S7I/OOHOvISITiPjKCbR1i3N0
D9ruJ7De+OOlUSHZrWO98Sdoe7+INuLWJsLwYzz0PyCbeey3/h0ydwRZOoV+y+c2xq8dfwMx
ug/jzr910aap0D3oe76IffQppNW78Esp3dGf7Q9dtLkswmPuEnrNwPPE19F3PnbBtULT0fd/
BePR38KZex3rpd9HhMbwfOH/wHjw19Hi24CNWAwn3M6QefZVnKNPoe37MvbRp9BmHkIE4lce
zOg+5JHvIM0m6F5k+ezS+hwcG+O+X/1YrdgUo3tdPzOHEFvvxznzMtq2Bzd8ZEq/46s4C29h
v/cN9Lt+Efvt/xfhi7qjLstG2kQggfHp/wnrua+5m9633Acb1HQUuhfjsa9d9jptxyPYH/xn
rOf/qTvOP3YrIrkDWT4NzTzatk9d8n79vl9x47vErLA2tg/P534f7J7bof7ItRuyvFF4Q+h3
/QL2G3+MSMwi0++gP/H1tYXRV6j5w//VXRyHs7TQTd/3JYQ3tAGeXz1C09EmD+DMvwXRLcjK
WbRP/cONj9fwY3zi72O98HUQGs78TzB+6ndWXXKhxbdhfPLXsF79Q7S9X9zQpcxXErbQfe6u
vXM/dkfR3v8L0HR34GDidrhM8+xK/XffldXflw1b36vNPIhz8lm36hm7dc1NAeEJot/+c+DY
iJGdbnuwPxnycUXbci/Wm/83BBLuitTr1DkX47ehzT6Cc+Q76Hf+7YuntRCIqQN4vvIncDXL
zdcbIdCSO9CSO9y+k9VBFo7h5I+gTd97XfJ61aMR18KljkZ0ymexnv5fMB76jaVjNjYzstfE
/Mt/AEJDv/Nvo+/ZmDb2xeJ2Tj6HdsvnrnlSa5hYkwCqhTQn5nLEEyN4MJnath1pWxcVgJQS
2mW3RPwYl9zrifn8P0XmDuP50r9CBBI32h3FZVhTUdHrWUxOjJLPl/D4AmgCeraNbdvLfjhD
ovU3LNi2je6NQv8aXdcH9v5nx3GWrnccZ+lc0uWfl4d7sc8fDfdS8a0Wx7rFN/Mw+JPYnjBY
1sbHt47Pd6VxXEl8yw9YXo9n2qh3ZE01gGP1mE/nSKVSaNjo3iA4F68BhhE3OeXHaoRKcXE2
tA+gUHzcUcWUYqhZ6gPU6/WrOvDI7rfvTfPSq+8Uio8jG9IE+mjH47zNcZylDsh5lndKlG3t
tuUdwcvZgBV5slo+fdT2cXvm9bStmwCKuQwYHmypMbPFPcOmVi3TM20KpQp7b9kFwNzZ02je
INKx2DLtLnTKLs7RczR6ls3O7e4McD69QMeWdE2bXbMz/evmKdfqSN3Hvt3u/tVCZoFcqYat
6dy+1z0toNNq0mi1Sefy7N+3F00IKoUMmXwFS2js2b0bjy4oZhcoNy3Gx8eIhFwBd5tV5rJl
hGMyNbOTgEejXc1xMtNgy9Q48Yg7o+iYLY6fTuPTbJJbdhL16+CYZAsVdLNOwzPK9rEIWB2O
HD/L1HiSuu1ly2gMbJNjJ89QrVXZf9sdBP1esLosFqs0Snkio9NMpuLg2KRzeWqlAqHkOFsm
RkFKPvjgPVJjU4yOjqD1X/LTJ4/R6piEY0lmtkwCcO70STSPD3QPWybdSbm5MydpNet4E9uY
nUoCsJhOY3Xb2JqX2W3uiQ2Lc2dxNAPLlmzv29IL57DR6VkOO2a2AtCoV+l0TXKFErf2038x
nUaXFuWWxd5d7k/tZtMZbLtHudlj/x73XajkM1Q7Fp1ujz273PwsZhepdmw8hsbU5BS6JqgW
syzmSthCY8/uW/Dogkoxh+VAOltg9569+D0a7XqJc5kyqXgQERghGfZidRqcnPlkzJoAAAvt
SURBVMtSq1a4864DeA0NaffIFavovco67gcAbMti+Y/Lt9sdwuEQgcBgc4fH6ycZ9lGut5Zs
mtCwrR6WtXwDjMR2PrIhRmiMTkwRCQxmMYUQoAk8y04zcLotpOEjGll+bpFGPDVCLLSss67p
TE1P0axVsGznfIDYloVpmsv2YwnGJiax2nW6prNkc2wL07YHS26EwOyZBIIhfJ5+KaNpROMJ
mvUKSzu8dIPxkRiO5nFf/v51nXoZ3R8aZIrQ6DZrNDo9/L5BGkbjSYJ+D/XGIA0F7i5bfVnJ
LYTAMnvIZU8yNj6B4ziEw4OlAcIx6drg0T9yb6+HtTxDJTi2jVgWXqfdxh8MEw4NjmvxaJJC
vXNBPgV8OplcEa9vWd5pGrZlXXCMjUfXSY2mKBSKg3jRSI1PEA34lprpHo+HfLFENDJ4Dk3T
GUmNUikW0c4ntS/ISCyE1x/Ea5x/PoFjS3y+wPoJoNFuUypX6HXaS7ZqtcKRD4/Sbg/2r5qd
BvNnT9IlsOzeLpZpYpmDHT7FShUNSMQHk0nVWoVmrYpv2YFcpWqNcDBIctl19WaTdqtJtVpb
yirb7NLumNRqNZY2ZNsWmcU5FrM5upZr63VaNOo1Wp0unb4ghYC544c5N79AretmlrR79Bpl
So0uvfPCtToUKw1KpdLg8CbHolgs4zjLmhV2l3PpIltTYeZzlSW/W12boEfQWepPOTQ7Jlsm
xqg3GoPnq5Zpt5oUioMdVe1uj7FUkk53kIaddpNCIQfa4KWbP3eGnmlSrQ3C67SamPUCVXNQ
iLS6Fj2zi9kd5Ge56voaTwwWNdaqVQr5HO1l8TbrDUJ+H7XWsnsrFRLJJGZvsPKzVqtTq5bp
mIMzpRrNJqeOHUUu2wSj67C4mGY+k8Pov9makHR7NgvpDEb/dJJOq0GzXqHS7CH7w9CdSpZ6
18JqN8k33HSVvTrtTpPjpxbXTwCRSJR9+/aRSg4SJxyOsnfvPkZHBi9ncnSCSCzO1omRJVss
7KdnOYyOjV1w7+TUNKFlpUgwFGFyappI0L/MFmZicopoeCCoeDxOrVxCLnu8SCxGs1rGcgR6
PxHjyREalQpC9+D3utcGQhG8Xi+6phP0uqW4JzCwRfxuxghPAHQv02MJvOdLTiOAV7YoNCwS
ob7fuh+f6JGvdUhE+n5rXgKGQ7bUIBHtl2DCIOgRZAplkrHzR7tohHwGi9k8icQgDcNBPwvp
LIlkcskWDQVYWMwQTwxs27bPAoJYdFBKbp2ZRUpIxgeFyJZt27ElpOKDjSupeIhCsUw8kVqy
jaTGCIWCF7w0yWSSYMCHlINaITmSdGv9ZZVHaiRJIBhkeRMhHo8zNjlFKjaINxaLMzo5SSoe
XapZQ9EkqYifaHxkqV/jD8cZT4QIxxLofVsomqBRLZMcSRHyuXnnDSdoV4vER0YHeeeP02tW
sHXf+gmgWCpSyGVxGHQwSuUipUIWSw6iOXP2DLbwIs1B9Z0plIhHQ1jWoCqsN2rks2mKlcG2
yHq9TiGXoVCqXmAr5bPklpWG2WyORqOO6dhLeVDM52k2m5iOhWm71nIhR7trYttdWl23FG/V
KrSaTUzbpNFx/em1qrSaTSzbpNJySxGnW6PT6ZHNZqi0+yWY2aDVbCOR5Kr9Ws9q0Wq2kECu
3N/9ZHdpNNsgIHf+WZyea4PBs0ibequDEJDPD7b31ZsdhJDkc4OTFSr1FkJAMT/Yjnry1BkM
r5fFuXPLbKfB8JFdWGY7eQpH91LMDH4IL50rEgoFKRUH8VbLZeYWFpibH2yvLOTzoBl02q0L
bFLodNqDGqCQy+Mg6C6rUSqlIhKdQnHQ3KmWSzhSo1gsLG0FKSzO0dODyG6DXr+pWs0t0LAN
PHabZs/Np06ziuaPY7XKNPs1tdWpY+sRtF6FesfNJ9mt0pZhJqKgf+1rX/sa18D5X4qPRmMk
Ekk6nRahoNseDAaDxONJup32R2wJut3Oki0QCBKLJ+j1PmqL0+t2CYXO2wLEYnF6vS6hUGjJ
Fo3FMc3eki0cCRMMhXEsh5Gkuw4pFA4TCAYRUhJPxNE1gT8Ywh8M4hWCSCyOR9fw+IP4g0EC
hkYwEsNnaBjeAL5AgLDPwB+O4ffoCMOPL+AnFvTgCUbd2kLzohsGW8YSmMJL2O8BzYNu6EyN
j2BjEA54QRjous7E2CgOGuGgH4SOYeiMjY8jJURCQUDgMTRSY5OAQ6TfbndtUyAdIv1+jtfQ
SaYmEDhEIm6J6vPqxJNjaEIu2fxeg1g8ha4xsPm8RKJJdE0Q7dsCfi+hSBxD15bZfARCMTzG
wIbdI19pEI/HiPVtQlrkSlXXFnVtunDI5MvE4zHiUbeGM3TJYrZAPB4n3q/1PIZgPp0jkUgQ
i0URQmDogoV0jngiQTQaQdcEuq6zmHZrvHAkgqFraJpOJp0mlhwhFA7jNTQ03SCbXiSWTBII
ht2+mWaQS88TS46sXw2QyyxSLBZJZ/PLbGmKxSILmUFJVchlKRSLzKcHp3uV81lyhSJzi+kl
W62YI5MvMLe4uGRrlvMs5gqcWxjY2pUi89kCZ+cWBvcWstTaPWr12lIN0CgXqLS6NJp1rH4N
0K6VKddbtFqNpXZ8r1WlVKnTbTdp986XIg0KpSq9TpNGv7SXZptcvozda1Ft9tvsTo98qUat
nKfe6rd1HZN8sUK9XKTW7NcK0iJfLNOolqg0+iWitMnlizRrFSpLnVtJLl+g1ahSXtZmz+Xy
tJp1yrXaBbZ2q0GpOrBls3k67SbFcvUCW7fTolCqLLPl6HXbFEoX1qJmr0O+ONjon8/lsMwu
ucLAVm20GUtGWUwP8rhaazGeSrCwLI8r1TqT4yMsLC6zlatMTowxvzDI93KpzPT0BAuLaZx+
c6lWrTAxOU42k8bs51OzXiU1PkEhl17Kp26rTmJ0gko+Tb2fT2a7TnRknHoxS6V5vg/QJJQc
p1XOrl8N4PMYtHs9RlJjBPzuNjhdcztnIyOjBAOuzdAErU6XkWSKYH90yDA02u0uieQIoWBg
ydZqd0gkRgj3R248HoNWq00iPrI06mB4DFrNFvFEYlBCej00my1i8TiRcMgtRTwG7WaTUCRG
IhZ2z9gxDDqtFr5glFTCLW003aDbbmP4w4ynYq5NM+h22uAJMjWecIceNR2z28bSAmyb6A9H
Cg2r18YUPrZOjrp9DaFhmx1MPGyZHOv3PzRsq4vpaExPTWDoGiCQtolpSyYnJ/H0RyykY9Ez
bSYmp/Ea/ealtOmZJuMT0/g8/c6idOj2eoyNT+HzujYNh07PZGxsAr/P07dJOt0eqbEJAv0R
GV2TtLs9UsvyztAErW6PkZFl+dTPu+RIilDf5vNo1JsdUqnUUt75vAbVepORkdRSPvl9HirV
BiMjKSLhfo3u91Gu1BkZGVnKu0DAR6lcJZFIEou4+eT3+6lUqkRiCZLxCEIIvD4ftWqVUCTO
aNLNJ8Pro1Gr4gvFmEjF0YRA93hp1isY/ijT40k3n3QvnXoFvJH1qwEymQwCSC9TfSbt2hYz
6WXXuZ8X0wNbNp1BCkgvs+UyWSSCdGa5LYMjIZ0Z1AD5bBabC+8tZDNYkgvuLRXydCxJIZdZ
6gPUywWaXYtKIUOnP7zZqpeptnrUy1kaHdfWbVUo1Tq0q3kqLbe0cbp1cuUWZr1AodnvA1hN
0oUGdqtEvtYv7e0W6XwNu1MjV+n3AZwu6VwFp9ciW+yXztIknS0i7S7Z8yWsdEhn8iBtMtlB
2z6dziKQZDKZZba0m/7LbZkMArnS9pG0dvPpwrROZ9zwlufT+fiW35vNZJAfiTeXySARZJbn
5/l8WhZHPpPp2wb3FrJZLCnIZjNL/eVKIU/HdCjms/SW8q5Io2NRLWVp99x8atfLVJpdmpUc
9X4fwGxVKVY7dGp5yq1+7d2rky21sJqF9ZsI8/v97rJVXV8aejw/+7vcBu5snKZpF8xUrrfN
sW3QtKWJIgDHsUGsYkND05bbHECsYrtwJnXV2VXHQa5ic7hwjF5KB0d+1CZxHImuX4nt8mm9
3raLpfW15pO4gXmnVoMqhhq1GlQx1CgBKIaa/x+kltDWhkGO0AAAAABJRU5ErkJggg==
</thumbnail>
<thumbnail height='192' name='Sheet 4' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO29yY80ybYn9DOfPaYcvqGmO3TrAT3QCKkRQghoEL0BCSS2LVawZcEOiT+B
f6FZoZbYIzG0BBICseG1xKCHbr/W4/XjVt1b9dU3ZGZMPpsZC7fj34kT5h6RWVX3VWXFT0pl
RLi5ubn7OcfOZMfU119/beFgrYW1/Vel1PAbIQiCo+P8XB/Gfv++oJSCUupgXPSZX7szBrAW
URiiLEvM5/PR/s65HvVvjDl6VkEQDN+ttei6DnmeD30YY2CtRRiGB78ZY46uR22H79ZiX9fI
4hhpHE+O1ViLdVmiaNuj93CT58jjGMZavN/voa3FVZZhkaZDm01ZYlvXiMMQL+ZzhO6+5POY
Qqd1/8ybBvu6hrYWSRThZjY7Guu2qrDKMnTGIFDKe73vCv7+ACCaaiwfmnxBYzcvz9s3DeZp
CowwAw3KRwCnQGPgY+FMQIiCAE3XoWpbdF13Vp98bMChgAB6QqdryfFzYREEAbTWiKJoaBME
wcAo8pp0Lc7cxAiBUlhmGYq2RWTMEZEcCSilAKVQtS1o5AofmfTtboeibfHZcolZkgzXtdZi
nqZ4t98jUApRGB49U0lMPsRRT2KzNMUsTbF3DKWUQqs1yrbFKssQKoVrxxS66xC4No8BH9/U
uXSPwAkGOHWxMcKQyKII+7pGqBRiJ/W0MUiiCMZaKADhI2+Wj4PgI1w+tiSKsKtrbz9jL1NK
eX5NeT1O9LIt9eO71tSsCxwyGv3N4hi7pkHg7ouIil9PKYXb2Qy3rp9WazwUBa5nM1Rti2/2
e0ApfLZaIY+io3eq0AuO4IwZVj6PMWRxDO2e57vdDnXbIo0ipNFHUiyaBss0hQYOZkkJea+S
FnyCUN7DcFVOKPQixzqgTs6R2MpNZal7wCSx6rZFqzXCIEDijvGxVF2HQClkcXxSjfKpHvIh
cMLZMiagNj6G4c9F9gn0MyK9IC7Z6Txq1zTN0C4IgiO1aWpmDUbUgCAIBnWh07pXH5iaJZ+N
tRYBgAxAVRT9s7cW8zBEV5Z40Bp5niNy76LrOiilsAwCaABV2+K+KPDp1dXwDuVzOocBwiBA
6Ojr09Wqvxdx3ovFAsBHtVDOlFJQyGf4mJnjgAH4yXxq5xjj/jEMnOakGPU7S9OD/rW7gabr
0GqNWZIMeiHXS339j0lOH4MSc1trj3R1KcElM/CHT/ehtT56QVJvT5xq0XXdQGBaa4ROrfCN
f8y2kWOI3LPVxqBsmgOB4Zup6J502yKP46HfJElQliW6rkOapmiaBlEUIVAKi9kMUOqIUOUM
+FgE7D4AYF0UWOY5qCd6H1rro3uI3dh993lqLPw5H6hAU/ru9wWfoQ0AZdMAAPIkQeaMuxC9
vtoZg+gMg0gy7Nj4A6VQNA3SKEIkDFH58HyEJ/um87i6RPcpX0rXdQPhS4Ife5G++6C+wzCE
MQZpFGHXNJil6TAGyYgAsFwuj2ZFus58PvdKWCiF+6JAGIaouw6zJDl6RufahxLaGHy73SKN
ItRdByiFVZYd9EGzZ8jUvLZtD54FgMHOkr/7cKQCnWPQfBeMSTn6bT4i5aMJHZDg06Gnbl4p
hVmSoGxbxB71i6uA/HdJ0Pw3/p9LYD42Un9IuvLx0HH5DjhhEePQb5xhozBEqPwGOb9G13XY
7XbIsgxhGKLrumF2Shxh0ziIWeM4xiJN8W67ReiIU45x6nnXXYc0irz0FQYBXs7neLvdou46
LBkdDITtjH0uiCShk6pEswV/F7wtfx7GmJ4BfMbE9yX9p+yI73OGkaoB73+M+cIgQNE0SMIQ
IdPNffd/Shqfcz/00JMkQV3Xg+pEEs6nbvqMTslk9D+Not6oZOoB9UvtwjBEFEXYbrfDZ1LR
mqYZCKZpGjRNgzRNMZ/PEccxPlkuB6+OvCd5LWstOq3RuXH5iL9zNmCgFF7M58jdOGRf77Zb
XM1mmLvZTQoKPuORd43bdY3TLni/9OwjKcWegilrW0rl9XqNzEkRkoiEJElGjb5T1xuzYfgx
idQjGaYMe/nQ5W/ngGyAJEnQtu2BLusby5gHin/ndlar9dHs1XTdgQo5m80wm80O2qTOJqN7
ms1mwz0OKojn3fie7bauAdu7bBfuXfvsybrrULbt4AI1xuCb9Ro383lvA7qZxQB4v9shDkPE
YYh9XQ/McArkqJC2lNa6f2ZjKslj4OvD91KbpoExBl3XoWmagVu7rhsIf+Z8wVOSdmqs33VW
mSJon8ozdW0f4Uom8qlbU+fQ9yEu4IQItTViNgd6+2rJVBelFHZ1ffAbcBzolLOIsRZ3ux3y
JEEu7AA+5qVQZ8fuIwoC5HGMyOn2b7dbfLJaIQpDdFqjaBrsmwZN18FYi4eiwKaqYKzFL29v
kZ8IBMpnxj+T7RTJmz3XkJy6wNixNE2HiKjvOvRdumGlji4NxnNVkCn4jNoxojzHuKKxyWP8
tyiKUNc10jQ9yXjS3cqneP57FscommYgjtYYVF2HJeuvbFu83e2QRtHggpazqu8e67bFfVmi
1vqAAbhn7VxYa7Gta6zLEos0xe18jiQMB5svCkOs8ryfuZRCFkUIggCN1miNQdN1yDwz+FiA
cWxsgU9f9nH/qameexW4ocbh83TIgXImCMMQYRgON8R1t6faKmP3MSb55L1NPQv57Ph5BFJr
iMmCIMB+v/fq9/ze+Rj5f5L+fGzzNEXjjNs4CHAl4gNxGOKL1WpQi8bel7Q10ijCZ6sVbkUa
w9RzpWNStX0oSzyUJW5cikWrNW4Xi6N2szTFzKnGSim8Wiz6eIaLqvP7JpqQRrnPuUDjimg6
HZN2vOPHYIzAx36TL5cGTRw9GFYujYGOPVb6nyO9pVDwGWZjM6YkfnmOj4mMMWjb9sAYltcm
AvVJaX5smBEYUyTCkxYqhdAjPeWsO9xLfxBKqcFFze9X3p885sMsSTBLEhRNgygMBy+gZMR1
WSKP42GmilwAUOHw/XB6OEdg03mRfOkcMlBE7Xx68CmdXV7DJxWk6iElGx8PfSZjRjvj76mQ
07iPwKVE9N2XD/IcKVRms5nXfedrK1/6mC2SRhE6YxCPCB5+nk/A0XWNtXizXmOeJAcziU8V
lU4N4FhlI6RRBIvePrnyuFb5+R/2e7yYz5FEEbST7hGLpch3xa9DdEIuUnmPkXyg9HmMuH0v
wgff7/yB0/ROUxafyn3tI6GrSv2XE/BTGWFqlvLNhPI6Y2qUrx29DKnicObmoEQ6Pr1LocT7
UEqh03rIvRq7Lx8BcUHzdrvFvm1Rdx20Mbhx3qOxsY5pErKNtX2u0fWE0wMAllmG3XqNu/0e
n6xWeCiKIVWC+pIqDn8u3LXtG9ejskF9N3Huce6b5WqN1vpAHx6TsqT6SIkjXxgwnlrsu7+q
bRE740tKf58k4ZmkY2oQHaMXIPuSY+DRYd4fJ2afOioJX14jcCkS5L70MaYUJvKebudzBKr3
Gt2XZa+CCJtC9nNKDXqMgIrCEF9cXwMAdnWNXdPgBbu/c+AL1Flroa3tjWD+xwfug2+alsfk
9yAIEEUR4jhGHMdDSJsGwq83Ng5O1EQ0rUtt5sR+rg4K9GnaMfM80PljL4hfi5LF5KxDMxr/
TQZm5POOWf4O9SntMq31ICyonXQQ8P9Ar2Y0jGFPvS/fOKu2hTYGr5dLxGGITsyA1lq83+1Q
udSEU8/8qbDoGeDVYuGlsdHzxt6ly52KxqaOsQ60MdAuAzGJIkTCEJXJZqS+SG7lhCKvIz/7
JB5wHIzix89xzYVKgR+dephkqFZVhTiOURQFsixD27bDPc6Yd8Snzo2plRSs4TqqlPT8fKl6
cN1bEscpKTkl6ABglWXDGoRllh2Mu2gatFojctm+vrHzMQI4ukd6FqRiAb3Up+xhay0s0Ae/
kmQ0ZYYwpb5zUHJmxIlVduS7mVZrpM4q9z0w+dJ8rjyS4FP69Kkbkuc+RfJkcYydW6BxDpIk
gVIKdV0PkVRjDFL3Usameh8T+2ydruu8kWHOAD5jXwosrhKGgiF8qhI/13fthbg/uv48TfHN
eo1rZhf4VCnf86DjTdfh280GVdchjiKEQYCqbbFIksHjE4Yhkig68kB9FyjVxxaGQNjYYDmG
l+jpjLfh+RjSVUkS4DF6ILWfOof69qlzY+dJKXtqXEopJEmCyOW2KKWQ5/mBGsSv7etrzN/O
MxklIcqceBoLV5N86hjQT/UGH9M+fLP8FHwMwfu5ns1wt98jT5KjhTO+++S00LnUh5mLLO/r
GlXT4GY2QxpFeLvdYpYkiN2M8BjIZ99pjarrDlLrozD8qAJJg8sHY4+DDMChu5T0fXoIPOhD
ag8foM9wkw+KMDU2fuM+fZifx4mJ9P8xqepTQ7jezVMSJHwGoRyr7z9fJyCZlLvzOBOQGiQZ
rNEac0/Gq288PkzNXECfvh5XFf7pu3dYZBk+WS4P3qGkL46dS2u4K8t+9Znqg3hZFGGepkhc
7s/UmKWwGLveN5sNFICFi7rT8aP1AFOqSN22Rzkg0njlf2S0TfVJ53JXljQEfTfpY0L+u7QF
uO5JC+JPeYqka1Ve0/dSJMPQb2OzEm/j86Pz63LBwvuQz5GfR2nSU+BqsFSh5BgkFIDXyyXy
JMHdfo/f3t3h8+tr1F2HBaMVX3zgoSzRGIPIqVmvlkuAXUeuFPSNexiHxzDmdtGnq9VBnhTQ
r3ILZEeyE95x7nRgXxtOwFJXlRJ9TNck79CYIeebFfi5dL6MIlNaBfW73W7pRK9RxSWvlJz0
d26+0JRtMnYNKQzkTOqTeMBhWjAd67SGfLvy3fpmonNVVGq3dBK71hp/8eEDvl6vUbpqFPJ9
t1rjdw8PMNYiUgo3sxleLhYHxD/0f9YoDt8Nfee0Q2rUkcYhO+DgD2lf16PELzvlbkDfwMbU
DcDv252UQIxxKL+d+uHBNqXU4IqlMe+qarJf6c7k9ypnm7EZQkr/MfWO99913SBAiLGBj25Y
KWD4e5Aq5sJVYtjVNYqm6cvDjDxX37uces8SL+bzg8gzZwKCQa+OdO4+fnF93QfXxDWDIMC2
qk7mKPHvvj+fBkL3EYXhRy+Q7yL8AXDVR07lRIAy1Cwv6tNDJcaCFlPgEkZKT/pNji0IgiFX
3TdW38uW98AlrU+d4y9CMoxkejpGBM+JnZ8n8358syV3NIRBcGD4kV8/cR4XPgapRvJnSP1x
dUkiiSK8Wi7xzWYDC0Bbi6/Xa9zMZmi6Do3WUMBQDCFz3kSfSvt2s8Esjg/GeEp48nZj4LQR
h+FxJLjVGp1Ld6WOtDHQbrrySQ36z/V1rtNKFWZssDzQw8GNTknIJA3lOOT5krGIOHwSkEdl
+TGeunGKKc95MT6bhX4jqb/f75Hn+UDYY7k2PhvKdy1yJdZd1+cKOdXAl07AGXWMKSRmSYJF
kmDrVmFp2xfeAnp1Iw5DBKpP0PuErU/mWLuIM5WwySYWDX1XRJxogX7VD1nexlq0XQdt7ZBf
7pvKfeB52dxrQefSd+pHtqE+5EvxvRC6hrV2cFHycwAMgSZf5uSYVOFG6VibUzMov08fwfPP
vA39j+P4KMg11gefFUgdkt+pDcVAErcYfcaSy8bGxt+bvNeHskTZdQiVwk4sQSSEQTDUGfr8
+vqoygRhV1UAMOQdaWOO1oZL++kcFY0/40ENKtsWsB/r9URiyknj+GigPhVFGmj0WUpfSfy+
KVwuauDXkCoFnU9GIjECl9ZkC0hVxfdwgiBA6UqGBMHpMiljQsBHRGMMN9WWE7K8pu/6/D59
goDeC60SU0r1BcrErMbHWrniVWPQ1uKuKHAq+6p1hPzJajXQlE8YzpIEe1e1Q67/4JhSK8cg
BVFEkp2vvKeGYRAMedeSUH1SgAZ7zvoCoLfw7/d7LLJsdOE0vyYnagJXs+iYJBg5blJzuNeE
Hn7ZttDuJXC1jsbvGdiB9+LUSxh7dkfPhvXJffw8RiBtEH7PMlbAoY0ZvCv0njuXaxSFhyUJ
jbX4sN9jliRDWoR8DtuqmiT+uVv2WHcdfnFzM6TP+J5rEAS4XSwQFoWXgeWznJp9x+w4joGt
wxFOm+pMXpRzl09XttbCWIvGPei265AnyUD8fAagkomSgEmak95fOukUCkN3WPTMfMlT6hXg
8n3qGhDPYkziKqWwLUusRI6M77wp+AhfvnwaLy2ckc+V2o+pm9oY1F3Xez6C4KC2DzFB3bZo
jUHimKDpOlgAn19fw5h+aWXuDNP7/R5K9c6RMZUHANIw7CvA0RhdZHrMXtHGoG7bo/XKEj7V
kzM6fwfyWlxYR76pckq394ETHs8opGMDQ1iL363XaN1Ar/Mcr11uN48BNF2HjSOsIAiwbxpk
UYTKFdmVBEPMKwmj6TqUZYkgCDBLU8RilhnsHjcbBC7Vd11VaLquN9iEV0W+hMRJNrnq6rFM
QP1JtU72NZbc5lMtaSZonB03GwlMUduZ8xa1WsM49XcQjEGAWRzjoSwRKIU8TfFms8H7opj0
1c/dcyf1lK49dh/3RYFbV6BrjA4lvfra+oQ4P3dQgeRJ/AU85uUBh6tvuO5vrcWmqrCta7TG
IA1DQClsyhJJGGKeJIDq6/QYa/G7uzussgzrosAiy7AvS+ysxfVsNoyPG6itk2z8JsMwRKpc
VWP0qc+qbYcFGPKB8hcyTxK0jgFOCYM4DAcdWdpCkgl8OiwHbydTvOkYJcz5IN+dtX1pySyO
kU/o8FIIxkwNone4bxoESuEqz1G0LRK3oL4dkf6pe+6zND0IUPrujbCv675WUBjCTLjU6Zyx
9BOgV93ebTb9eoYg8KpuwEhxXJ/Ozy88pltxA4yrP5uqwlvnClsmCT5ZLqGNwa6uMY9jVG2L
qm2xynNYOAmhFD4UBe6KAq0xmLmqwtp8LIwUhiGWeY673Q5XzlUox0fMOBuROPIegcMQ/CkG
iMIQ85Hg3dT3c3732QO8PKCU9JwwrO1TV6iWju9epZSc0gayKMKd08up7MlnyyXuigKlK3Qc
hSGuXSWHzD3DIAiGMoYyQVLSURrHfbxpRKqPPSOpegMYVDZt+1IuLxYLREEwxEEoAyCShH7q
xfsGTjcHfFSHSEK3WqNwxY8+W62QOTUkDIJBxVnQS0VfIDUJQ7zZbHpd0fVfdx0e3IywUB99
5cpJJYr8ckjj8FyQ4Uh2xjkq4bl2E/U3FRvx9cnPp8U40ukgc5eiMDzK3KV+lerrfV7n+Vnv
PQwCvFwsBklKfbwY2WjEdw++tQAckbifc5+9j6Ep4v1QFEPf2hi83+3wyWo1lGgPZCd8+paq
gfwub1T62anw6a5pYGyfmz5mnARBgNhNq8QMCh8ZQFuLbdPgvijwzXoN7bwiG3eDUgLwfh/L
AMCxOsf75H8cU9fh7eVilqka+L5+5AIj31iAvgjw2Jg6tzlFaw79N1KFou+t1niz2eDbzWZo
O0WcY8+Inztlbz7GFuUzH10vCgK8WiwGurPWYlfXWDih++XdXd+O3/BTCIXOLZumD2+7CLIx
BmXboqS1vHBVnpm0Ag4fVKc1siSBAlA5KVe58/MowtyV0ehsv/VPgJ7Df3FzM4xfFkI9146h
BTp8QYpkeKm7cinlk1hN1w3q1JgBK3Xi74pzpSZ5dKTxPqa6dVpjyVKJfeDP2ucKt9YO0Wff
tfg9+AQaQS6w8vVFqRZmv8fSzVJREGDuPHakag8LYs7lNgltDNZl2edxO9+5Nn3lLpp+ACAO
AiRhiKJpDgod8RuJwhDaGNw7NajpOmROh221Rq01SueaozWoaRgO5T/4AyOdmGwFjiiK8OHD
BzRNg+Vyid1uhzRNUdc1bm9vh5VfcjEPl2g+wWGMAZQa1AQqvktqny+b89znfo6awtv5Ksnx
5zNPkt75cCZ8pRDpPsh9+lCW+Gy1GtKvj2wK9IwUKHWwN4CkvylhLNv7ngv9VjQNXi2Xw+rF
LI6hALzdbqGt7QNz34X4W7czya3TDbnatHcr+Ak3ed77ml0d0JVjAjLWaJDaGORx3EcWrcXt
fI77ooC2FhXTIWnElUutnSUJbmezvk/0DFC1bW+QuVVcrfvt6upqeEhVVeHly5eIogjv378/
KBJLD5V/J9uGM4IxBlXbYud2aaH9rajyMbn2fPCtARjDue+K3LpyA47HMN5j6KJztt4qyyY3
tguUQuqcHhlzSfuuMyb9pbOGNlTJneZAv++bBtuqwqdXVwfXt7b3JubO06fevHljecfSuzAF
WhDtS124Lwp86/LusyjCL11pC2stVBAgcapG03V4t9n0vuUk+biboDG4cj55qad6Hy56qdY5
658jVH3e/yxJsKsq/OrlywOpTTsvJkphu93i6urqYBMLaVfQf/67cdHVVuu+8hqfpoEhysoh
pZf0aPiev+93+Rt5XvjM5+ub/hND0w42vvs7Bdkvf1byd2st4K4rK3LQ0lBSU9RE39b2saXC
7YwzlHpEr352xvQR/ZH7r5vmOBv0MTdNC5hJ6qdRNOwlxaU/rQyiql6U3Wesxdf39x/bMpUp
j6JhmjoHBhgyECU6a7GuKqyrCqs0Rd00SNmY3m02WGYZSq3x6tUrfPjwAS9fvhyeBfcI0V8Y
9tut8rUITddBoS/fQVXUlFJQAPZd53WX+qZw+Z+rYpIwSZXkqk4QBN4kOt9/fi0eSCyaBmXT
YJXnXp1d6uG+JEN+j7yt+9BnGIt2dK9l2+Juv0cSRVi5VBnZt1JqeC/c1buvKuRJgk7r3qUq
3OP0P4ljROQOsvY49cAHY+2QSvtht0MQBMijCFezGaquQ+Xyvjkb1VpjV9fYVBU+v76GUgpt
1+Fuvz+S1oSy6wYD+vvExi0OiaOojy533VA//9pFIJMkwX6/R+Y8BsChQbzdbtE0DWazGdbr
NW5ubgZCr92UzGdQa/tShZTVKF2gU6oAcJhbRUTKU8ClynbqMyeEsWuHQTAEK3klNt7fmKHq
uxZwnJaeeIqRRVEErTWyKMLSbZ86tT0WBeQ4siTp10GcSKdQSiFS6BPSOmPwwunQY+iMwe8e
HgaprAB8kudD3sZX9/cHejph6yJ8n6xWSOIY66LAvq7xUJZnL3n7PmHQE2rtGIwedtO2fVnu
1QqbzQZFUQxVH4gBjDEoigKvXr1CEATIsgx3d3d48eIFSnc+XGCISyWKGPv2251KuyZwSS0D
fnLfY9+aianvPiRheFAFWp7jE5Sn1KYvv/wSr1+/RhAESJJk2BeC76H87bff4vXr13i/36No
W1y7jNV903g3S/Sp7OfsJ0eIAOAqz1G6DSum0GkN7aKyiyRBEkUI0M8KbzYbtC6Ca8RDeDWf
Y5VliMIQ+6rC/X6PPdvk7C8bVdfhm80G11mGxOnBi8UCm80GZVkiz/NBn767uxvUI5LCtIpr
lqboug57pVA7A5zDl1LsM1AJPmLypVr42pwDqVfLcZ3rdfJ95zODUgq73Q4vXrzAfD7HV199
NUSHqVLgfr8fYiKb7Rabd+8Q3d5i60oyamuRFAXiIMAyTfs0FbhZhO5HeOF845OIgN46PlVx
C+hf4K9vb49e7KaqJgk6UAqbqkKrNfZNc7Ze/4dEQekYbYvb2QxxFGG1WuH+/h65i5ZWVdXr
m3EMrTXarsOmqrDMc7x58wavX79G4Zb7zcU2sFJ3BQ6lujR8+QuUagRXg75rDGFMBXqsAewD
l86LxQJfffUVjDHDhnyLxQJN02Cz2SDP82E/5c1mg/lshlqpAxU5UP0C+sA5T6gEvLH9dkxx
EODNdotVlh3MFmOOCwBQX3/99eSdek8SN/xQFKgdcXc/QuJ+LALV77D+0pXp2O12aNsWWZYN
FeHouXz54QN+9eIFrLW4u7vDq1ev0LqF4NxwJmOV1BWeDzMliQncoyNzrp7KCKdsjymc0hb4
DMCj6r52QL9rzbv9HldZ1u9wkySInDaRhCECwFvAmPpoXNZrFAT9JoHiPsdUtmFOpmAWl+6U
Dy6nbq5zWWuHXBxtLX53fz9q2P5UYGy/jtVYi0+vrrDf7/H600+xLgroquqljQvQKQBV0/Sp
w24xexRFB3q59JLw/2PeE0mcvB15bIixHpOzRH3T31QhgymMuct9RjGlP/PNTbgbWimFd7sd
6q5DmGX4hBXA5Q6AMaOeIG2EU+qPtbbPBTLWDll9QO/Lfrff4/fr9WCpV65GvOyA35BP//8p
Y1NVaLsOX3zxBeIwxO18js5Fvqla8zLL8FAUsNbi5uYGm80G2+32wKUHHJds971ATlD8T55D
fRFjcdfs2Eun8VDpGN/Cf9l+ioA4I8u/sX6UUmiNwbebzUBrcMRfdR1u8nxYe+7rawoypYNf
e+o+gnVVDSuw3u12+HqzwW/v77Euy2FRMtD7hTdVhXfbLQq3nyx/Yduqwpd3d2hoRRL6NIWf
Mjpj8OX9PRqWzjt36bqU5pFEEfZN0wdtlMKNy0sie8GXTMizOAljMQBJQLy9rB1EBO5LAOT9
aq2PysqfI8llW64FyPY+JlaqL7e+bVu8peJk6DfBeDmbHbhF5djHbKIphpeQ6TkAEG3rGlHQ
V4IgPR4ArrMMN2wBCoXyLXCQxxEEAdquw7fb7YH+v0iSPmbwxCn2x4K66/DbDx/w6dUVZs6/
fD2bYV0U/UKYOIZ1WanX8zks+tKLHz58GPZD5ioQ8LFChY/Y+Xf6zedvJ3cod89S+zHilXbC
uZ4eCR+zyOQ3nzEPYFjzUTo6C5TCLEkGYXkO4/HryrZ8RRlvt3Hex8wFCIclkbAWX7MUV8LY
aigKllHI3BiDu6I4IP5lkuDlYoFWa2Rtiw+C635qqLXGb+/ucJWmCIOP9Wp2TYPrPEcSRUOq
7baqsMwyzOdzVFU1BNO4vj1WJYMT5Dn6q+xDrgc4hXOMbx84AcmEwbG++bFZHB/U/yec6xDg
9yuZmhd2oGeoTb/PmO1/PJiVR9fJDYVE0dsEUseiC+9dhJewTBK8mM/Rdh32bhvZrZUAACAA
SURBVKPj54J1XSN2eeZZFKFoGqyrCp3WuJ3PsXaCIFAKaZoOLlSCUurAFjjHB89/I/gMaS5x
fSrWGJ7iAZLjHOtj7PcoCBDBP9P5XJaP8VZdsXL1dB4J58jFEKgvmYpxAIrubqoK73c7ZHGM
T9w2OcYY7F2AonD6L9DPDp1b6ripqqE2/XPCTZ4PacRpFOGLqyts3YywSFO83W7xfrvFy+US
y+US+/0ey+Xy6KX4VJox7wknCmIiUjt86xWkfv59wjf+73oNyUin9Ho+hnNmzigIhvgBxbuK
punVR++F8NGqXqXpsM7zbr/vU4q7Dm+228H4A/qXv3Rtaefv2SPyzX8quC/LwdAH+po4VGQ3
UAqpq7RWNM2wxkCCxwX4f3mc5wyNqRm8BL1Uf566Gm4MvL/HqFp0T/x+OaZ0fn6cridnUd6/
/Az08YOb2WwoX2Nsv/tla4yfAQAMXo3a5bS8Xi4xSxJs6xq/f3gYphWF3uC1xvTEn2VDBh+s
9a5J/SmjdetKaZ+0PElwO58PRl0aRSjbFnXbomoaXF9fY7PZTHpIfMbjOYTLfeVyL4ZzXICP
xWOJfew+xxhh6hpjKuGurvF+tzt7bNb2ZRxJhHlVoKs8H/LXqXiqNgYbV2KbqzxfXF0hj2OU
bTsUXm21Rqs1buZz7B8ezhrYTwn7tkXZtojdwp8gCFB2Xb9xIBWVcusCKDefXjq5LX0eGeDQ
eJQR1FNeHKkSfN/qD1fhxsYh78V3/lPGduT9AfDOrTf3xQB89gNdf+ts1sinAl1lGV4vFoM1
HSqFVmt89fBwoPIAvbSjwEXEOLp16c9fPTz8pWR7/iHwbrdD6xbtDCuR4NYyo5dMVdvCGIPb
21vc398fFA2TBcSAw5RrDvLvc+LxzRQ8QAY8Ppj0fUGqY9wNfMrNCfhL5NNxavNQFGi6DrM4
xmuxdapUGfl3Y/tiDQq9C/ZgBvh0ucRVnh8ZU1kQ9PUjhQSqug73RdGvB3Z1e8gALn5E2Z4/
FMIgQGsMVrMZNlWFKAzx7XaL1lrMWESTXKBckvMVZxynpKnPbcgx5lo8F1PtxwzrU99P/T4G
n+1DQmKeJLh2hu3U+Xzs9JsCPrpEqcE8SYZVTHSCUn3k7s16fZQGQai6rveNVxXe7XZ4KMuf
BfEDwIf9Hmu3wVsSRfj9wwNarfHpYoE0DPFQFHi/3cIYg9lshvfv3wM41vO55PcZl2NboxJz
+QoMPBVT555Ty2gMY6rT2LV9jMyPUR7WudceZl6lhmWSATFAHATD5heEqm2xrSp8dX+PtceT
Qdg1TZ8uoDW2df2TT4Q7F521KF32obV2WJV0lefY1zWu83zY1bxuW8zn88EjJF/8mFTlKo1U
faQ9YG2/jPAxPnOuWv2QmKoldS58bU+pU1LFpOTOJIqQhGG/X8HCuS4tPj70uutwX5aTVX85
tDH44Ko4/NywdpFfKg5wM5sN66SLpsFVnuN+v0eo1LDS7Pr6+kAvPgVqe4pgrLV9bU3hrjyF
c9WksbL3p/r7LraIb5Y41deYd4n2SNvXNV4tl/07u6bF2+irr1FC3DnEHwcB4iBAHsc/S+IH
erfonUv1oNIom7LsmQB9nKDTGh92OyRJgiRJ8P79e9TOewTgYDO/MX36HBfnLEmwdTEJn80g
IfsjyDiEr43ElAr2FPcpV7e07QtqTV3/nGus3XtZskX2gxGslMKbhwcUj1BhOioF8gwWwXwX
FE1zsIUUVa7rjMGLxWLYGUUbgzRNkec5drsdttstbm9vD2yBsYpqvs8+pgmDfoebJAyHcvA+
4pDrimVCne93OubLwfk+vU38eVhrAWvx7WaDRZrimmUojzH6GKMsXGkcXuQrIOljrMWVp3T4
FH6eMv8YNAtYfKwKscpzfHZ1hffbLZIwRO4KQrVuC9TZbIabmxu8e/cOtduCNgyPd0X3Bcmo
jS8DM49jrMvyIAXF2n7FFKlm3J1KMwv9zt2t1CelW/v2cfbB56L12T1jjE5j6tw+BVRIeTVS
5eGc2Q7o03s48VtrEVAF5/e7HT64EuYXPB5UCmbn6ujTyrqb+Rwbt6i7qGtEYdjvkuNm2tev
X6Oua6zXa++LpM8kqAB/NinHLEnwfrfr0zRcGZjGVWBo2YYlU3bImDrCj/G2YL/JOMVjjGx+
X/umwdcu/nRXlmf3MXY/ichAVUohutvvsanr/sGc0VHkiQdc0EPhYxbt2+12yItSAN5sNngx
m2FTln0JFreph7J2KAkiXaG+IrAcPjWEpGXhIqRJFA2GsQ/SQyO9TfLaYx6re2cH3c7n3j4k
ZJ8+9W+VZcjjGO93O6zSFIFzt9MuQXRuy6Luj2E2rTWCfdMcFbKawoX4x2HROxK0I15ykVIV
5lmaonWJdFQnyFqLsiwxm82OCEAufeQFfymiOYZXi8Wwcm+M+H1Ezre0Org3z29cul/PZsMO
PvKcU54bPhPJdrF7bitXumeoBOHaf9jtsC7LgxloCtK+Ob+C0AVng6ofP7j9yTrT78D59cPD
8KK4ARuGIZqmOSDwMQwEZQx2bqM6YhRioLZthx3idxMxHG4PSC8TcLiOWbYhL5G2FrumQdE0
eCjLg7UhpzBlI3Bc5zlC1ZdC4UxPn1+61J3Hwlp7YYAfAtb2qdG051nqsmO1tX05xrbt69q4
Fzifz/Gw2QxGKnCcUUn9Eqqqgu463D88oK5r3N/fo21bvH37FnVdY7fbDUTReTYhB46zSIkZ
5R+/LynNA9cPVcKjbWZPQdoG57hr0zg+SLHfVdVRyr2xdrB7znHNj++cdsGTYdFvync7m+HO
7YOchCGSMMT7/R6zOEajNT5brQAAm80Gq8Vi2PzOR/Q0MwzE4BZ2KFcbMwgCRFGE2Ww2HAP6
FJeK7A1hpJ4b/JJjoj7ofO6dWbgNDxVrx8E9UI91naZRhJaVVlm5GBa3OR6KAvdliVApXOe5
d1NEjssM8APBoC/2pIIA90XRE2gYojUG2vYFhklCVU2DwoXpOcYCSnXTYFvXmC8W/R7JUYQ8
zxFFEbIsG8qeENHmrho3EQmpL2OLU0j1odIv9CfbjBLwBGGT/TKFB7HoiF838rhpOYIgQKgU
PlmtDpZHjjkRIjzCar7gcdi3LfI4Rqs11m5LWIt+kb0F0BiDzXqN2BUYpk1GpD7O/fQA0NQ1
8jjG/cNDXzHNBby6rkPbtkjTFFEUYbfb4dWrVwDGXZgSU+kZT5Hc3N6h627rGqFS3mK3QO9o
Uex8YjjaIvab9RpXeY7UqWh8RsvDEIubm2FfMD4O/hzoczTFrRd8d6yrCtoY3JUlYqeTk3R7
t90iBPBZng/ET25JuaMiV4WoIkcSx72R3baIXcWKIAwROcJImH7MVQ/67iOKU/DVEhrzGsl9
4KjNrSsfA08cotUaL+bzIxWqaRp0XYemaWDrGl0YYr3f48qtu57P54iiCA8PD0MhAq01sixD
5eyBLEkwn89hTF/cLE+Siw3wQ2NIE7HHNZIC1e+GyRcTSWLy+eR5pYmybfvdNZ2x+n63w61b
w017ndF5vD9JoI/Vx3mf8nzuZuT347vGAdO7RMxYlOJUSh2Um1y5Mv5zt3IxcyXU667DYrGA
MQZJkqBt275sJIA4ig52v+mMGapTXPCXhEprJMFhkVyf0QiMZ0GSfk9tXi0WwAjRE4ZYglhY
/lQmOPAKiUX+8jqSUYhJ6Lwlmw05g8VxPGydJMdMxN/WNRYsVyhxO5bK8QLAq+WyH++j7/iC
R2GVpr2uSlKREWIc9Js3v9vtDgxD6R/3ph58/AJArJhSx2kJPHAmiZYbxk8F9cHHyv9Lw1v+
DTEHMVv4Uip8v1VtO5Q8mbJV5G+XGeAHRBQE+GS5ROeM3lZrFG2Le5fX0hmDX97cYO3WUnDJ
V3cdUraTIpeWxpjekHbnUHSUUgR4IGuYBXBYXpzPCiSBfTPFOZBj5OfymY3GRvlIqXP7jl2L
3wdvw8dL/a7yHDjDvSuFyYUBfkBYJ3UD1W/0kEQR3rCisEAfyr+dzYap2Np+29hO66HKBtAT
MGWb1m3bM4zL++FqhlRrCJEnhZm35ZHkx9gEXIJTn3L2kbNXyjbw45HlMXVlzOXJmSsI+j3N
To1bMvmFAX5AaNtHJedp2rvxXHovwcKtqbB9unIWBP1WVUodVHnutO6J3hFXEkUHRQjmLvhE
m5AD4waqD3Q8DEO0bYvIBdbo2Jg6wYn77u5uMLppoztiKtpiihvlvhmHGGlqIw3OKFOqIf9c
ty12df2xwDNXFyefzAXfGfdliV1VYZFlwwIijs4YWEe81vZVy4y1B3XywyBAniQDw9DMECiF
LI7xUJZ4KApvPgwRSecJLNFxAhE6nwnG2lJ7CpjRRh20SUjTNMMKOHJhjo1N/gVBMJQu5PaD
1P0p+s03C+Ft6XMYhrhhFaP5fV5mgB8YrTFoTb8ZNy2T5EygrcU3mw0+WSzwfrdD2TRIo2jQ
j7l6sXCl/bhEDpU6qE0kMbQLPm6rxCEJnTwnbdseGMZTM4lSCtfX10P7putwxWYRPo5zMXeZ
s5RY6GNIacjXziVMx+icNI4PiJ7jMgP8AbBrGmjTl45ceaKfxlq82W77EjNhOBh0fLXWFPhR
XxwBmM625MTFCYcbmbKdD53WfXU8RoT8Go+BUv2iosKtljs1biL0QMwY/Fy5HdRFBfoDoTMG
66pCEsejabsWfVBr71Qh4DDJa8od6INPP/bJYM4gfDkkqQ5N0xwYy1OuUpLWUzOF7/q+9kOm
bJoeluMUfUj3MVePpHrHf/u4QcYFfxDcuwJa8zTt0yN8PmpgqMPaaY3OmF73n3ARngJv13bd
webdQE9ASgSySFJaa5EkyUGZ9sGmGCmeIEu6nwMZLZZGLq2nzpkRDfS+f+4pk33yz9I9TKrl
hQH+gLgry5Mr7+quGwqMJWGIzB4vfuc4koiurU914qqJNgZV1w1GdhpFiFmkFei3MZqzbZ58
MQnJnJJRTmHMtSmPp1GEwpWSyR1TnnMNH2NxW+DCAH9gPJQlPlku8Xa7Hd08ZNs0yKMICm53
Hke4pfOM8ACZT98HjtMbjgJAYYi5KI0iiTlNEhR1PeQZWfsxEU/uc8av+9SIslRPZJ+523du
57Jh5fa98hwZ7PMy7JNGesGTYdFv5HZzYqFG2XXYNQ0qtwzwbr9H5ErVj+m4kgHktD8WJOMe
Et5HHIZ9UM4RvrX2QD0ak8CP8fhwwpxKxaZr0VLP8Aw1y2cTkG0zuEzPHukF3xtqrYdqcqfa
GWPwYbcbdunhbslIuBoJPmKWnp4xIuWEaIzBMs8HF24cxweLY7ivnTC1UMZ37FxVydd26j58
4IQ/fD777Au+V5z72vZNM+Tw8BfOXaRTq7skE0jP0iniC5wRaozBtiyhgmBYeCMl6ymccmc+
hhkeS/xj17owwI8cYdDvwyyXEUpX6NQyR8DvXZkiNmlbkDFsjEEcx8NscE6cgo9ZzkKyMt1T
iPqce+DX5L9fGOBHjrJtUbstpwAcSX3u3+b6bhj6tw2SRDgGqZNba4/SjYHjRfOnJDMnwik7
4hR8dtDYtfg5MjZyYYAfOVpj0Fl7FO0dM2p5Et2pGYH/9x1vtT5iFplq0LnyLpwgT0lyObuc
U/rdh+0ZNYim4gHAZQb4SYCWCgKHxK9d6kHDglJyJpBMIDfcGEPj+pWMJmeQOI7Rugp31OYp
xEz3NTWLSAO9altsJmqG8rGO2SmXOMCPHLM4RqgUPuz3qLXGMk3RGXNQ91MphVAplE2Dmauh
KQne5wHivnKKjFrbL8ahawF9wp7VepD+sq80TVFVFTJmJ8hAlc8Y92EsHVqi7jpcz2ZDEWIf
zlGtLgzwI0Yahvj86goK/fY+b3c7bKoKqywbKkxQaoMxZqjbSkTtk6RjATJOrEkUIQrDYflm
EkV4KAosAC8TkGHcdd0QL5hSu4hBfX5/Gbvg3xvngqXNMjK2Hvpc8PsGLgzwo0atNb7dbHCV
58iiCJ+vVmiNQd22vYqidV99WilUbpMOblwS5EuXejFnGABDWUfeLo1jRCwiLHV9IujOlWGX
kLPGGOFOqU9pFAETDDYG3/3TbxcG+JFj2zRIwxCpI744CBCzlGqLPsmtsxZd0yBPkmFWmHIv
Tqkh2lpEgoE6rWGiaCg45SNAmgVoYYwkPCndfTiHsJ/iNRrzOF2M4J8ACpcg592q1vZbhpZN
06dSm8PNssfWFBz4wkXufMW2uSVpSYRvjBmyVX3gpUumPEynZoDHGNK7qsI3Dw+jx6UBzFW+
ywzwE0DRtijaFvM4xsv5/Mjws9bCoI8aX+c5IgANWx11ClIa8+oRBEpFttYOO4pycPXi3DgD
nUfqk/TanCvp52k6JAyegnQCXGaAnxD2bYuHsjzYlJAI5ZWrkX+33+PtdttvemIPawHxc/j/
g2s0zWBgc0ibQjP3KP0mZ5spQ5y7Z2WFCL7fwTkxAqXU2QwgcWGAnxjWdY33u90REQVK4TrL
UDgDuXRqzHtRhoXDxxTxyMbZPP6g0Kdmj6Fxx54S5Z1Sm85liCnI53ZRgX6CqLTG79drvF4s
DiTfVZ4jDAJs6hp3ZYl1VSFSaii6xSE9OPSfVliNpU4DGFykR3k1buaQJQlPMYE0yKU6JV2m
vqDblNdrChcG+AnCWIuy6/D1ZoNfXF8PNoG1FvMkwSJNsa1rfLvdIkwSxEky7ORC7Ya+RqK8
Y2oSEeW12wyP/0ZtaR9h2d8UYUrfPx8TgKMtZPl5U/2dgvrj3/zGlo/YHPuCHxcCpZBFEZIg
wMvFYvjdmL4kuzUG9XaLfD4fCnQB/oAYQUpkSXRSModh6F22KYtY0f8xtyy/9mPUHMms/Jrk
kh3DZQb4icNYi6JtocMQVdcN8QKl+i2CPqzXSGczlACyIMCMbTFKGNP5iZCoPg9VtOAL33n0
V8Ln1RmTzFKFeQoDHAX0ggCtW8gj+6axXIzgZ4Jaa3x1d4e3d3fQwGAYx1EETT58T4rEORHZ
zkn5qTZjffhmDw7JFOck6k1dZyr45zvnMgM8I4RhiBc3N/hwd9eX/AhDFFWF0NXMVx/+CWKz
QfP6bwNxfrpDB6XUUUU762aedES98FWNsNaeTHQjbw9d96kYU+EkU1wY4BnBoq8C/ermBrXT
fZfWYldVyL/8n/DLr/8hgmyB5sv/Eet/+T8H4uyoD5Kcvt1dpCFbdx1CwLujC+1HELIZhxfE
nYpMj/3mVdX6hl4vEH2m73Xb9guLlMLCVdW+qEDPCBYY9hrOogixUsjCEJ8W/y9+9f5/Qzi7
AaxFVLxB9Pb/6nN8um60yFWjNbZ1fbAInuvbiyRB5mr0HJ3bdQcpFaekuVTLuKo2psq0WuMv
3r8/2Dxbgl83jeOe8AE87PcALjPAs8Ob7Ra/vrkB4AjJaqx++9/DNlu0+wpBnCFcvoZ5+xtU
t/8iqqoaSpdTNqcxBmma9sTXtlhcXR1teRQEAZIRV6lytsdUUIu3nbJHpDTnC3WKtsVnqxX2
dY0rp+adsjnoOq3W0JfKcM8PnbVojUFMLsi2BLZfQ8UZgiCEbQp02zeIP/3noLXGbDYb9gTQ
WmO/32O5XA6EM2zIPRFI8yEKAoRidhjLE5pKgOPtt1WFOAyHPRAWWYYwCAbv1Nj5ksFSx5wf
drsLAzxH7JsG17R7e7JAdfs3Mdv/FrAWNoigghiYv8bc1cxPkqSX6EmCKIoOtleVGPOwnNpd
Zoz41+s10jQ9cFeSa5VAVejmbpzSkJ7KA5I2DNBX2pinKeZperEBniN2bl9ceuHbf/4/xm72
V2GbAkG2QvH530H9q787tOcEJfcWPidmIPvgeTsc1tqhlAr3x+92O+x2O1RVhaZpUFUVjDHY
bDboug6bzQbb7XaoXv0YDP7+Ee/TJRL8TPHFajXsMqOUAqxF+O5PYJIVzNWvvTk88rMvR0cp
hcbVKPVJeh559akf0gvE0zOMMcOu98QoPAUiekLGp4wEy3FfVKBniqrrBgYAACiF9uXf6j97
3ItSDz+l41O+j2xDWyTx2kRyJuGqEt+LzFdlbip6/BRINezCAM8UAaYXrcjfuNtxKjp8kEYQ
fNy2lYPvyO7TwXkdIf47v65UqcbiB6cwdq80tgsDPFPUWsOqfpuhnoAMrLFQntVkRFxj6g+5
Pn3BsCmcMoZlu7Fj57o2fTg1xgsDPFOEQQDrdqA01QaLP/2vEZs9dr/+99De/LMHbSVBE5GT
rk9tiEBJxeEJbtKtORaZ9Ul7ORafuuQbLx+r7N93b74xXRjgmSKA27Pr3f+Dqz/5+1DdHkEy
x+JP/wEe/qX/DEiXR8TII74AkOd9vhBVoQN61YSqP1AatE/VojRpqXZxQqTP56Roj8Fnu3BQ
cI+OSQa7uEGfKfo9yCzm//gfIFQWYX4D29UI2w3y3/8vg0sSwIHHhe+5q7UeUiVoBiCCp8DZ
lCeoEcsmfSkOvrydKeOb+jn39zAMEUXRsJ8w/ae/CwM8UwQAVLND1O0RZEt0m29hdQcVxlDo
jVAidimpuR9/rH7PVAnDKIrQtu2QTgEcG6B0Lc5EPoOaj+kUY8j2/LpjuDDAM4VSCjZeoFv9
Gt36DeLbXwFWw7Ql2uVfOSC6sT9eSNfX1ndN+ovZTvf8d/qNQwbG6De+CF6OyYdT4/PhwgDP
FHEYAkph/7f/U1R/4++hKx6gZi+w/6v/PpqX/4L3nFPEw3Von8vUxyikKkndX/bJf+fEr902
Ub4/zhDyP80uLctI9eFiBD9TUHUHG6bo/ujfxeYX/zp0p2Hj6c35pvJ5fAEseVxCMpVkGOlJ
kkxyypvka8PbnVqAc2GAZ4rYeWgARxTRDFb5yxlOuRHH2stAFf3nhEx9RVF0sHi+bduD9bp0
fqP1wRawvvFIdemcWIQvvkC4MMAzBd9TTOrN1toh7Zm+S+IF4CVm8hZJ92PbtoPLkY4nSQKt
NTK3+oo21qOEO1pM37YtLIB1UeDVcnlArDzLVKpgNEYOX9yCG+yy/YUBnis8UplQliVmsxne
vXs3FLEiQomiCF3XYTabedOigyBAXdcfF8y4fo0xKMsSURShKArEcYyyLBHH8cAAlOjmixsE
SuHVanVUwIvugdrxc8YgmYDsAd/C/gsDPEP49GxOdFmWoSxL3NzcQKk+83Kz2WA2myEMw4Fg
qS/5mXzoZNxa2+8SQ4tneNkUn1tT5gAN6pTtC++O2RI+TKk356hIFwZ4hsiEpJNEGAQB5vM5
AAyS+dWrVwCmF6JzVyT147MfuH0wVpRK9isX4T+GCcYgVTn+O32/MMAzRMbSoH1SeEqVGHNR
cvgqvk1hjABl+UTJUOfglGdIxiAkLgzwDHGd56PEC5yXa6ONwfvdDrfz+bDjDD9f+vanYgf8
M48h0Hljkr8sS3RdhziOB08SGc2U1kD2iDFmyF0aG4NvrBcGeGYIVb9jJHCedB7tJwjwyWrl
PcYJaYwJTjEgJ3jpfeJ90Bas2+0WWZYNnqY8z1HXNdq2HbJTfQzgS9ngdtGFAZ4Z5s5zI92U
PnACfqzq4evjHGPUF2km16oEN6yTJBk8T3JWoX3JxphoKtB2YYBnhqJpvJWape/c5x16CnzS
fEzlGFN1phiHQHsQ+9pStudY32PRZaUuG2Q8O2iPhJSEKH+TxijHY5iECJwHnaSOz9s+tv/H
jOEcFyhwmQGeJWhHGCn1pRrgUwkkxnKCJq8/UaqQn/8YQn0MTgXJLkbwM4ZFXxFixitC4NgY
lDZC1baIXJBrKrgEYPAA8b587WWBK59KRJmdp5LWHosxd65k6AsDPENs6hozlmQmCVTqyqQ2
hC5V4ZREjgVzTc0e/Ji29mATbzr+fRO/bxxjuDDAM8S+aY42xvN5Ybiunk+UQ3wqOPG/3e2g
rcWr+RxhEPT7DXwPuv+pmMapa1wWxDxTSIKYWt5I8KVBfFf9nPKGllmGXV3jzWaDdVUdXPMp
jDAVeBtzAtB3jgsDPEMkbhvTKTwlheGx4G7RRZoij2OUXXdUuxQ4jgiTfSB1d59L1fc7zwKV
9Ug5LgzwDNF5JP1YctmUJP0+VBRiAGMMXi0WSFwWqXauV188gj77jG3+X96bb4ZLksTLaEr1
WbAXG+AZ4sVs5vW7k84vF8hMBc2+C8jApThDFkX44upqqOnPCXbMSPelSZxy3/J6o74x8f+X
GeAZYunSBzi4OiKJ5twcnseCS1v6HjkDuGa1hvgYiGnO9QwdRZfrDYL3v0FQvPO2l67Yywzw
DPFQFENGKAeXflLloGOlK2aVCVfnU0CGt4+p1m6MwQhT8rHJ71xt4v+j+z/D/I//C0RJBqRL
lL/8t1H/lX/n6P55P5cZ4BnirqqwqWsAj88IjYIADSuRSCu7ngpewoTjZjYbDPVTnqAxA3ZQ
Y9yskv35f4MwimGaPWy1QfRn/y2UaQ/a8rF0XXdhgOeKu6IYPvOcnFNEHYUhFkyF4kasj0jJ
0zIG6X6lfgLWrzxG/fo8Qzx9gs8c4d0/Rrr/CgAQZCsAFkkcIvzmH43aC1EUXVSg5wqDPvIa
KX8aMNX+HNqzhDguFYkoP3z4MCygJ89K0zQHa4NXI+sHuI5eFMXglqQxJEmC2Ww2tD0n/4gY
jxbKBMkSSBaIZgm6zTf92Os9rOmO7p8z0WUGeMYgkvF5UHx6t/H41un7arU6OCZVm3MNZ6X6
solUYTpJEsRx7B2T7zcaU1mW0FqjKAo8PDygTF7j3e2/Ct0UfUUMo2GjHA/Rp0czCe/zMgM8
Y5Rti0WaHqVBcMIaCBh9Qtwiy7zEzBenEGhhPcdYagJdaz6fD2OYub19ZZtzDGLaiolUKK01
yk//DahXfxPBb/9n5EGH7at/BW368uB8yUwXBnjG2NU15mkKTk6ciHglBgVgliRDYatTmMrB
OYeIpYuU+vJ5qHjuEn2nFWL83F6NugZe/BHqIEAC4HZi3BcV6Jlj17Z4Oe0DUwAACQ1JREFU
t9sdVIk7IgDhbw9ZScVTeEwU2WfQcnvklLfplIrlu945uMwAzxybukYUBPj04f9EeP/n6K7/
Gdhf/x2v6sG9RFOrxOgc3zHe11GQauR83mbM1Wntx3pE5+YxTeESCPsZof3m/8D8z/+rPv/l
z/871LqE/qM+QHRkCzAm8Kkpj4XPA+ObBei7BB+bT0X6LuO6BMJ+Jljc/ylMW8BajSBbIPm/
/z7U/T89IExSQXxS+1yViCD99FyK8+9yFqEoNI8dSLfomAfrKVDqsij+Z4G43QBdA92WCPNr
KN3CbL/BJniB+Xw+VHZumgZJkgwVFnhJc+B0rf0x+PJ9JCHXXecNWPlcoAS+3zDvf+z6vL/B
/njSHV3wk8L7z/8t6DBFmK1gmj26X/xrKG7+FqIowm63w3q9Rl3XUEqhqiq8e/cOVVVht9uh
qiqs12tUVXW26jFmAHMc6P9KwQKYOa+OLx5A8KVW+LxGp4zigRH++De/saXbRvKC54u0eIPb
t/87rl/+CvrXfxdWBWiaZihZTgTRMVog7wxvR7PCOaANMKawqSokUYQZW5JJxMrP54lvY+5T
Xw3UKSO+67oLA/zckIYhrvIc166MoAyKkeojfe+EwXg8Qx2qqsq7IIWuCwCt1khcOoM0lpum
GaLEnAEI0kAek/L8OK9UYYy52AA/N9Rao2F1/cf08rE9gLm0PcUEU3n9RJyJI0bZTqmP+xBw
hpMeJB8TjKVV0Hm8VMuFAX6GmMfxUZ6+dFdSLGBM76fjTzGMn+Ja9Y1jzJ0K+NUfmgF4XxcG
+BnioSyRswS0Mb0awKQHSDIBtyOCIDiQtLLfUxgzZnk/MjDmS3aTSFluFHDxAv0ssW9bfL3Z
HOn2Pn//KZ+7TKs+IK4T6s9TcOpcydSn2l0Y4GeKom2xca7NsTycc4NOlJlJTPR9BapoDFPH
pq7lS8mQxy4q0M8Y3+52sNbi2i1G4UYk/34OaEf4MAzPysORUeFT7X2YInx+XNoK/PhlBviZ
46GqDio0cCl+CrINrQ6bYhqZCzRF3JyAxzxSBJ5ROjYzDGoPa3thgJ85Gq1xVxQHevNBLKDZ
QXUllD22D3zeF2ICX1utdR988gStpkDE2rat195o2xZN0xwQPjeQZbo1Z46LCnTBQRlFay1g
LaI3/wjJX/wPSAMN0xSwy8+x+Rv/EWx2c3CuTzKPRYqLohgYII5jtG1fscEYgyRJ0DQNVqvV
qPfo4eEBaZqiaRrM53NUVYXVaoWHhwcYY4YVZlrrwQvVNA3yPB/dYebCABegaJq+YK2T6PP9
l5j/yX+JcHYNW1eIFy/RffgnyP6/f4jyr/89bx88fZo8Q5wRlFLD+l+eYEfEH4losA/X19do
mmYg5jzPEUURlsvlwfWiKBpctLR9Ege3dS4McAFaY/Dtdjt8f/Huz3ALA6s7mLaAuf8doBuk
v/tfUf/i34RZfD60lWoFqShyN3gAR2uKqcoEYbFYAICXEaztl0EmnjLutLO9NKylMcz7ot8u
NsAFAyKlECmF9dVfQxMtoaIE0B2sboAwgineIzTVUW4PtxmIEM8xpEk/90HaI+dCGs4+o5sz
3YUBLhjQWdv/JVf4zV/7T3Bf1DDNHgr9onmEOczs06G9jxGIuKYyRmXc4ZQvX15rCqciyLLf
CwNc4EWb3uDrX/8HsPECpt5D2wB3f/0/hE0WQxtrLVqtsXVlGLmkHcPgfvR4ZaaI3EfYvD3N
QOdEgA++X9KhL5hC1KwRdgVMmKFNb/CL6+th/zGlFIIwxNvtFlkYDpt0n5spSm0liIB55Tff
ufKcseCaL4P1kgpxwVnokivUs8/Qpr37891ud6i+AHi9WGCRZYNUlxmXjwUn4lMzg7QjHpOC
cUmFuODRaLWGVWoIeFVVBa012rYdpDBlXE6lUpwbbQamifocRvOpZhc36AVPgrEWb969Q+6W
SMZxDBMEiLIMiyyD1hr39/eIouhgOaMPj5klTjHBuTaEvPZFBbrg0aiVwmK5xHK5RJZliMMQ
e1fSJAxDfPLJJzDGYL1eY7/fn7QHvq/M0VPwuUMvM8AFj0atNTZVNawrjsMQr5bL4bi1FovF
AovFAnVd4+HhAdZaZFmGbKT47jmQjMIrRMhMVhoH/90XU7gwwAVPwl1R4MpFYAHAGgMbBIBS
eLfd4mo2Q+Tyca6vrxEEwVDKHOijvlR/6ByG2G63Q8UKyQir1erJSzMvDHDBk2DxcQMO4KNa
oa3F2+0W73c7REGAeZri8+vrwTimVIb9fj8snczdTCKh2eL9tm3x4sWLj+5XRvBv377F1dWV
N4nuFC4McMGTYKzFN5sNfnF1deCyLFxQzFiLRms0RYGm6/BiPkfu4gfAx70FrLUo2HZOHJRb
ZK1FnucHM0XZNLAA8jjGq1evcHd3N8wqj8GFAS54MuquQ601Mkd01lrM4xihUtCMWPdNgzgM
kXuKZCmlvBttTMFaizSKULENMm5ubrBer4fU56l9yzguXqALngwL4M1mM3w3xiBQaqj1c9j4
PF3/7Gtbi8y5Yun71dUVtNa4u7s7u58LA1zwnaCtRSt2ekw8iXDbukbzxJSbMUPZ59vPsuxk
OUaOCwNc8J1grMWH/f7gNx9RaWuxc/bBY3Cul4hjsVhgw2amKVwY4ILvjLJtD7ZhuspzhJ7g
VuHSJZ6CxzAC36HeB6qKbYy5MMAF3x2dMbgrioEJ4jDEL66vEQtVqGhb/KEyj/M8x36/P2IC
rTXev38/7ItwYYALvhfclyW+enhA6Ra6J2GIL1YrzOIYK7YU8u12ezBbPAaPKbhF27re3d0d
uk/LEi9evIBSCmmaXhjggtMIz4yyNlrj9+v1wARxGOLWFd2KXB9RGD7JFiDIwl1TCMMQt7e3
wyYfjctX4i7SCwNccBL6EWtyLYCv12tUNBNEEbS16FwfSRiibFt0E7PAQV2ikeNnj8cF0W5v
b9F1HVar1cHxCwNc8L3DAPh6s4E2BqFS+Hy1QursgXVVYVPX+HbCSzO2tJKvD35s/VGtNWaz
2UEy3GVF2AU/GLS1gyoEAJ9fXQ15Q0BvEP9+vT45u0g/vy+nn/DYtGprLf5/jn6pFxteVscA
AAAASUVORK5CYII=
</thumbnail>
<thumbnail height='192' name='Sheet 4 (2)' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO29W48lyXYe9kXec9+rurpnps+Q1PERKdKkKBs0ARGG+EABggRbEARDL/pv
fvWT9aQ3AxYkwIYtUjBtHpGUSPBozsyc6Vt11b7lPTPCDxmRvXbsiMzcVdV9qrv3BxSqau/I
iMjMtWJdYwV7+fKlYIyBQghx8KM+08EYg+M43Q8F5xyMMTDGIIQA5xyccwBA0zTwPO9gPFu/
ag6c84N2qo3+uRrbNFd1n+q3EOLgb3rvJuhtVZ96f03TwHXdg3a0f/15m/pnjHX3oT/bpmkO
xs3KEoHnwXUcVE2DgDxbOl8dpnul/VJssgy7ojD2Y7kZLKIIeVXh6WwGx9AnHbusa2yyDHXT
4GI6ReT7I4ZgxvmfAs91XSPxNk1jfFn0Jek/JgJRfSuCqOsadV0f9Wsi7qyqMA3D7jtFEH1M
aYN+L3ftwwb1MoQQcBwHTdMcPFedAegzUlAMT9ubXrJpbNdxwBiDJ58zJW4TUVdNAwBwRxLM
pihQ1PWotgplXWMVx3Dk++y7N891EXoePNdFXlVHDGB7DvdlAs/0ob6yUahVlxK7Wt1pe9O1
tF/XdY9WanUjeVVh5nko6hrTMDz5xoYeyhAh941jW5X1cT3PQ1mWHTPrL11neP3vRhKo7Rp1
H0Vdd6urEAKObNtwfvC5fk+7PEdallhEEWbkGav2dOy8qlCOJP55GMJhDLs8x/PVCvMoMkpk
fQzPcbCaTrFOU0yDwNretMj2vc8+iQv0MICSDIrAVSc15/Dk5/rgSh1R1/fBkSsWVXHUhBvO
8e3NDZ7N50c3M7QaOo6DXZ5jEgQQ2oMfs5oOwbSq2x6wUvPquu6uMxGx6kM9Z/3Z6qpo1TQQ
AASAUKo+en8OY1hnGWLfR+h5B++w4Ryu4+D5aoVUruyR73djVlL6B54HLgRebLcY89SWYYir
6RSNELicTOC7bqeuDYFzjoZzLON4kKBP/d/ENApen1iiOrz6bJ/nuJzNuknb9Gj6wG2rKu2f
2grTMARjDFXTICIMRVcSGzGrNlVdwzOs0vTBqHFP1RtpH/oz0lcc0+o3NCd1X+qe1f9V0yCv
KkzC8ODebDbU5XSKsq5RNg1KqXZyIRB5HuZRBIcxTMMQNedIyxKx78NxHKRVhZskQeh5mIYh
PNdFPSABAtfFxWTSvity733aBJ3/bZpiTtTdsc9Lv2+bpDS1BwCvlhy6ybLWkGIMW7lyxEQU
KWkQ+f7Bi1YrvdJ9hRDIqwp5ngOMIfQ8zOK401H7GIHqzbMowtskgcMYZlF0cIO2m1GYBgFu
kgSrODaORR/M0CpuAh2b9kGZnhr9Y/uzPRvOObKqgsMY5vJZjLELAHQGsc2oFELAZQyR7+PF
dovA83A1m4Exhtf7PdKRqk/VNAh8H46cb9+964tXI1f/gNDWEHTng03l7WMIAPC2WYbVZALB
Oaqqwps0xbPFAj5RYag3pqhrBJ7X6Zp0QNUuZgy+56GRBHG93yP0PFxMp0cToNDVi1kYdobX
qaoL5/xg3rpUUnPW1QsdpvZ6W33l1/up6xqBQa+lMOmqqt99UWAaBEa74xSYHBhJWcJlDHEQ
4MvFArmUGKFn1I6PELgu6qbBLIrgeR4YDmnBJBXp8ynqGhXxao19z/qiMSRh3ux2mEVRqxqT
+XgN57je77HJMgDtSuERd5rrugdqyiKOsc9zzKSaYpoAYwyB53USYhbHndehD3ofoech9LxR
q76O1WRiNTxNonKM3mlrM8QAvlzZ6LPSmVGpOpTIOecoqgqBwVOnQAnNNGc1nn4f6m/PcfB6
t4Pnuvj64gJTKakB4Ol0ips0RUP7QmvoBq6LaRjCdxw0nMNzXXBpO6gxxxC1J50qiyg6eZHT
VVir6gOAk/t+K7UD3/PgJWWJjIi5rCzxervFVFrzwDuD1XEc+JK4q6bBJIqsq5bO9f6AUWyC
IhTd/TkG7oDR2Tem/hKHrqOEZVNjqqrqXMFCCHiSsan943ke6ro+dCDIhaBvrkIICLTE2TdX
072EnocfrVbg5L2p71dxjEUUoW4alE0D13E6NZneu1J7dFDD37ZCu47Tqdr6qt4nkU3P3Kb2
1JKGtnmOrKrAAPhygfYAIPa8jgm47GidZRBoJYLvugeSQHkMbA/5IbwtFNQobHokiU68pxig
+rX0913mqiMgopeOo1ZwdW80gAZgkPjlP/ju7Vv86uVl75ysqqc0jtX86HNz5IKnB9foPGzP
SXdaqDn0SVLatq+NDUbmEeJdnESTmA5jDDmRAALAWnLKJsvwZrvt9OemaXCz3/eKezqRu3pX
FBzHOXKn6v9TUasIyjQXiqEVUp+76lctAncFjQeY5qICaGNAr8urCgIwqpmm90D/bzjHq90O
363X2BfFyQvX2PesVLwx/Y9tp19jm5PnOLiazcA5x64o4EkaqpsGTuR5Bz7e0HVxNZ1iFgSt
v9h1kRQF6qbBy/Ua2zQF57yL6DZE77svbC4zStzU80S/V0yq/h/qs9L807o+SUGN6Pvc69C1
ygY4ZQwBYJOmWESRUc009UUlwjbPEfk+JlLSnzS2pjLp4EKAj7SzABy84zHt9FiSbT6O48B1
nM6DNideRa/hHAxA7PvIqgqe42AWhuBCYFuWKDnHJs8xDQKkZYlnMgagBlIvzGRY2oi5KAos
FgvkeY5Q+n73+z3quu76XC6XXb/KHz5GN9Rv3NbGYQxZVSEiop36rXXchfBtXqM+KClApVGf
Mc8AXM1mB8GwsXNnjOFiMgEALCVR9KHmHMpr6GjvwvTMCklPjkF96lOTh96zKaio3luf2lXU
Nb5cLN7dT9PAq5oGDlqDp2oa5HWNb29vO8tfcfC+LAEAr/d7OI6DSRCA4XAVaJqmE+FUfaE3
67ouZrMZrq+vAQC73Q6cc8znc8zncziOg+vra6OqoBMTXQH0VV+Q+ddyTlSPdR0HdVmiQLuK
KkYwGWxjDGET7nqdulYxvh5UVH12z/Se7lHb+GqsTZYhKQoUTYMFcY6oedB5UcRBgF2edyqH
3q8N91GB9EWHMYayabDP89ZrReYSeF5rBM+iCDdJgmqE0cgB/LDdwnccLKIIl5MJmqYBFwJV
XaOoKnDpGYiDAL7nwXEclE2D2yTBs/kcQRAgCILuQahVj3OOPM8RGwJY+sMxEQQ1wJVk2mUZ
hBDwXfeAARhjmIUhsqpC2TQHkuAhYJKIY+H7/oHXyNQ3xdgx7uqciH0fke9jl+ddLIfOo69P
13HAheg8VH1zGPO8lCpKx26aBruigO+6CH3/yEtVVBW2eY6lKTD61998I8qmwXWS9A6sw2MM
vut2qlNe1weuOIXA83AxmcBzHFzvdvj68hIRCQp1+rVoAz4X0ylev36NOI4RkiQtkwQwrdS6
p6VqGniOg7Kuu5VInyMXrRvRlhl5l5X8rsRGRTmXNtgYmMaq67rLRxpSK/TP7+vAoGNx8k5s
0orO9VRw0WYfCCHgex4C8swEWidBwzkCbREEAC/2fbze7U4etBFtanOmhcr1x1vUNV5utwDQ
iU/di9Q0DV5vt7iYzfBms8HTZ8+wvr1FGIbwZQhfcb1Ss5QeaPICUVUslMRfNk3LDDLtVoEx
BgfAbZKYVwhNZI8halPCnAkmolSq4ympFLSvAxemYR7K+Pc0A9I2/7H3YIOQ2gBjDKlMbzcx
nFJn66bBNs9b17vjwJOxhz64jGGb53g6nx/lSO2yDKHvo+QcNWMItfk6LzYb1HdYqe7iC9kW
Bb69ucFtkiAvS9R1jbKu8Xq3wybPIThH6PvgTYPLy0tsNpsDI1v3Eui2RVmWuL6+xna7PchR
8l0XDO90ZepFUIh8v7sn01gnPRsioRRB60RFvRh9/VDP05C3Q41p62udZfhhs8FaRv1t7Wm/
pjGH5kCvo/9PtICX6V4dqTK9TRJc73Zo5P0PeeAup1Nj8qPnuoh8H4s4NuZDsT/+i78Q+ir+
odBFLuXfz2YzzKOoTaqSIfLtdovVatV5RqgOyBiD53m4vb0F5xxxHGM6nSLLMhRFgel02rlp
r3c7BJ6HmnNcTqdHq68QAklRYCJzbkyrvu5uHXWPhNmUnUNtFaPLjmweGtM//a2gJMhBaoV0
CCRlicj3u81GJvXHZGz3zaHPfUzbUBuOXqMi4FwIlE2DQEoA1Y/pHh8CD2v5nQj6WC8mky4d
VhG74zhYLBZYr9dYrVadm5Su0Grlv7q6QtM0nfFIt12mRYEoCDALQ/ywXrdjG16qybuhQF/Y
KTbBgbdGBtLUjymGcgpzjZ2DAo3q9hnpfYRmUl9sBLrZbMAYw2KxsDKI67pIkgShTHx8sd2i
EQLLKELgOFjEMcqmgSNtThNsTDUGv1QGoFinKQTn3Y4itXoxxjCbzbBer7FYLDr9X93sq1ev
cHFxgaqqOuOREiqTL91zXWRV1e2b9Yg6pBDLdAUTaLuhiK4ONSdd7bK9rFOZQI0/ZHjrLsIx
MM3RJB11JlD3+eTJE6zXayRJAt/3kSQJfvSjH+HVq1dYLpe4ublBVVW4urrCereDkIvgJs+x
imP8YrOBStmfBEGXuUq9drqqZZuj6V4e3oF8R3AAt3mOH7Zb7IviINLMGMN8Psd2u4Uv85Co
CuTJFQ1oiWef55hOp3jz5g2AVg+EEHi732MSBEf5ICZ9Vo8r2P6mP/rn6m+aQqFUKGqoPxQU
k9lwF6+U6rfvxwY1lyRJsN/vUZYl5vM5NpsNXNfFz3/+c1xeXiIMQ+z3exRp2nnqBIDbLENW
16iEQCmT2VzHQVaW2GQZfliv8WKzQVKWXeqO8gblVYVEpnb0SbpHIwEUaiHwYrdDlGV4Npu1
G6VlWrZ6oI7joCgKpGnaMYTKrqxkdYF5HOOLL77Ay5cv8eTJE4RBgEUcYxHHRykTlHBM4vTU
1VL9poFAJbWod+cu7tW+sXVb5ZcJxeRv376F7/u4urrCZDLpbKHdboef/OQnuH77Fl4coylL
TJdL5HIvs5q/wxgc1m7Ymfp+t1+YMYaVjGLTMYE2Yv1GejY9x+lUJz3SL4T45RrBYzALAnyx
WCD0/c4GyLIMnudhuVx2hiXw7sX//PoaXyyXiIMAnufh9evXePr0Kaqq6rwJemkRRaTqxZlW
9TFqBgX14ZuYTDHDGEOzDzajWjeCx+KUa/TUgzFuUfUcy6bB9+s1OIDLKMK+LDEJQ1zNZijr
Gi7wTiL0PCNK0GlZQqAN3plKsejzfDQqkA37ssR3t7co5a6qV69eYbVaoQBws91in2Vtll+W
HeQSVVKFUp4UajTbdNi+xD5FqDb93OTS1NUdmiZy391dCncx/MagT3WgDKx/TvduDMUybrMM
HIAv889+9eICV5MJmBAIZALbGJtF9zZNg8BI/KZ39OgZAADKpkFWlhBC4Mc//jGAdseX4zjY
5jnKukbD3xXdWoQhsrJEI1/A1dUVXr16haIoDtQok0+bvkCboavbCrrRraD78PUVX5c+Q4Ss
e788oh6OkUxDNoI+bxMT9DGGGkO1A9p3tyFxB9VmX5bYFwUcxvDVYnHkw++zyfoQW/Y+297R
R8EAAPB6t+uCZ0Ab1JrHMZZxjG/evsVtmnabOiZhiE2eoySxg2fPngEA9vs9gONgmE6UCvRz
PQtR1/nV36bPaV9KGihpRQm770XrPnX1mcmgtvVzF1VLMW8f0evzdxwHYAwvpVPjxWbTxnsY
wybPcS3fg8febVK5z9h9z63v+4+GASrO8fObGxTSygdklNdx8Hy5RFnXyGTpPuVGzWQGqyKS
MAxRVRUAu3uPrrDqWpsYtq2Stv71/igTqh9X7r6zrdRUUjVN06l9p45tQ5+Xx7QqUwY2jec4
DtK6RkWI+GIywX91dYWvl0s8m80OtnIOzdG0cI25HxPKuv54GABorftv3r7FNk1R1XWnrsS+
j8jzukoUQrQVJW6TpFtphWgjq6vVCjc3NwjDsCM2RXB9Kgl9OTbC0CWDTaLQ/vXgmMmY1UFV
KYU+Qh0LfQGgjKm3MRGWPqbrOPi1y0vEnneklwshEGh5WbZ+9LH1Nqb2aVmitLiZhWgTL9/s
94/PDTqEmnN8t17Ddxz8ysUFirrGLstQNg2+u71t1Z35HJHvo6xr3KYpLiYTZGWJummwnE4R
huFR0hhj7ECNsOn/gDkLVYfNxakzCv3eJQWoTiFgW3+nQicqypC0b/q7j2nV97MgANhhGsRd
GVT1S8fWFwMhBDZZhqfz+dGipL5/s9uB4xFFgk9FxTm+X69Ryxo2se9jHkVYZxneJkm7sy2K
kBQFHLQrwpfLJTjnWC6XuL6+xuXlpbHanMnDob4/xetiYwL1mW5fUHfufYn5oaBLt76Fwfb/
QivmZbJlxkS/x6p6jDF8uVweqFa0bcV5l4bz0TIA0HoYZr6PJ9NplzJbNQ0a0W6CuE0S/NqT
J210uCi6jRl1XWM6naKqKnhyw85B7UytMC1wSAgmY1Wv62NSFdRLNm29NNkGNka04X0wzBh1
6r6rufrf5J7WJYzuYLCpnY723igKmRLjMPZx2QAmLOP4IF98EgS4nEza4JlMkVDluV9tt0ik
oTyZTLDdbrs0Ct17MyTa+9SOIRXJZOzZCOFDQdevFfPdJS+J9tkHk+1kWjj0Z60/oz7D3TSP
KAhwNZsh9v2PWwIAwHWS4LnrdhHDsq6Ry8S4oq5RN027uYIxcLQboWvO4dQ1Li4usN/vMZ1O
jUYs8M6TYfpOQa/Opotc0wppStoz6dlUNXpfMBHbfaVJHwGb+jctInqEX8GUykKv0/vREbhu
W9kuCD5+CVA0Dd6mafeAJtLbwDmH77qo5cOay9NK3iYJdnnefu/7B8ExCtOqYnq4thV7DAEJ
IbpUDj34pLtHPyTuQ/y6B039f9fNRWPnk8u96Kfio2cAANgXBTZ5DqDd2qiqKMdBgKQoWmJ3
HEx8vy3F53koqgp1XWM2myFN09EEblvZ6M8Q0fapRHdlpvtgSM+3ST3Tj23+d3XN9kFJ+Vfb
LX7YbLCXNDAWQohPgwE4gG2eQwCYyppGN0mCRlYC64xQtG5UVUGAc44gCJAkSWcMqx+aYg3Y
06CBY0agAS0KW382XVjp4b8Mm4BiyC6h8x/yePXB9r2+uKjP1HbaRJ7E47nmwmCmSHInaXtn
9BGhaBr8sF6DC4FpGGI1mRzceC6PEhIAdkWBrCw71ePq6go3NzdHAZ++Vc3EAH3XmqrWUagX
RQN3H9INOobATZ9Rnd72MxZ6e5vkdeSmpte7HRzGELounkwm3Z5jW9+mcT56I5hiEgQIZDTY
c11EQQAmibCoa9xKEbmMIvjajiJVmFYFotT/VJc1vZw+D5Bu8FGD2uQ90q97CPSNM7adbVW3
4ZT59y0I+vOjbT2nrUs1kyfdjIHpfIhPRgIAgADwZrdDKkXiTNac32QZbtIUkevCZ+1pOK82
m7ZcivQY1XXd2QIADlYbwPwSTNBdiabvdO/P0X2cyAD3VZGopHqfUqfPPjj1M8bawman3jm1
tRh7hDvC7oNtnndp0Ys4Ruh5SKsKiUyKmwYBVnGMXLpH3yYJVpMJAt/H8+fP8fr16y46bCPO
PnehrrebVlWTu9W2+o5dvfX+TPGFD4Uh9+8QbNfoNY7GLkim/mhfnxQDqNKO9PCJ2PdRc45l
FGGTpog8r60BJKuE7fIckzDsdPaiKDoD2GaY6jD5/23Eb4IQArs876oW97W1QalrdzlM5K5j
6qDP6FS1aQi2RcnmOaNzUr+NzHDnGT1i7KQkEKI9EdFzHMzDEE/kieVCiO4crEkQtOpQWeLi
4qLbbkm3To59cUOeHb0Nbeu5LgqZ2jyWcfQ2dyWwu1zb5xl6KKlDx7CplkNz1/vQ39EnyQC1
EPjFZtMGRhhrU2PrGr7jdHUqPcfpCmExtMe/lmUJ3/fx5s2bbt8Ahb7C9ak3fSnLJmaIPA+l
PDCO9jWWOHVJZZu7KdZBr78PlPp3H+jeNcdxUPeopPfBOk0/LRWIQtXAVCecv9rtsIgi7CXR
cyFagiOJcrHvI4oiTCYTZFnWFeQC3nmFgMMXbasRpItc9be+A422mYYh3u73uJJnMPSpXRQm
otZTKNRnau59jGlzRdLvHnKVN81RPUMu2rr+NefddkeTpKXPaSyjNJ+qBADaoNdGlkYHgC8W
C3iui1KWcm84x0QaxYE8EFoA3S6rIAiwWq2w3+9xe3t7VM7dtiNpyKvTVxKFQZYv5Lw7YtbW
Jx3PJOZp4Ei3D0yxDZuEGCOJ7rMyDxnwQghkVYVX2y1yedi3/gP072O2wXecT1cCAMBNmsJB
6x5VzCDQbqj3HAcvNhts8xxfLhbdcT5FWXZnyQohEEUR4jjGmzdv8OWXXx4ZmfRBU2nQZwSa
ortqBVvGMa73e1xOp/C164A2mc/VUi1MTGhz46rv9bTtu6zo+qpLDVLTnPqcADrRcvGulPpS
nlY5VCWa9qfG7MMkDD9dCQC0aQ+l3PyQ1zX2ZdmmSMvvp2GIhnOk8vObJDnYokdVheVyiTdv
3mC9XhtXKRNBq3SIPrvhaMUFEPo+9kWBXZ4jLUs0ot3Ct83z9j6kykbHN+nfunpB/7f5/ods
iIO5avfdp6fbJIwOdS+/WK9xvd+DMYY3+327sekESTNGKvmu+2kzgAIDuvhA5HldsGwehvhi
scA6TbGTD1gRayNtA+Ddi768vERVVR3xmETuGB3ZpIervyO5fzaRRB64bndY9lyedD6XAb4x
HiY6nm5g6rAl8DHGuqrS+kmUJnXEpgbqC0AfQyyiCDXnWGcZyrpGJKVyPcLIPkUl+zwYQBmF
aAttMcawz/POTXo5m+GNXG2SokBSFN3hDJn0BgkhUBQFInLCIAXdPEKZoC8Ry6arKmLP5c6l
aRi2FZ3xroL12HO6dOYcswIb+wCwJVmzfbp3n/qnMOR9WsYxvpjPuxMwY98HF+Kg3iftq+Yc
hWYjjMFnwQCq5jzQSgJlByhEvg+PMTyR518p3TPyfRSkbGRZlgjDsMvh141J3fWpGIAavo2U
LkNYRhFCz0NucMfq0Fd2SpS0dKT6nsLEINSAVv16joMvl8ujwsK0j1MM0LHtFlGEi8kEDedd
4Vtd5bve75HKArmnGuSfBQNQqPLot2nafVbKo3uu93u8TZJOv1aeE/Wwfd9HKbNIT33J6rfn
OEhklbs+MMawiKLODTgEWp/HZA+oOei1SE2fUSYQaN2FjZAxlaoyHsh9FwwRK2NtAVzXaUtd
2sblnGMRx92Rr6fgs2MAVYdSnQ4JSG8AY9gWBUJycgqVHAC6HWQ2MWxaOSnUNY4QSGVmqoo0
q434+qkwoed1Bb5soESsp1PrNX7GqEnAO3sgryr8sF7jF7e3eLnd4s1+j5e73cm7r2zPpY8J
6H1M5D4PvY7QbZK0J5GeoPZQfNJuUBNquaJeyYpkAu0qcDGZtCIUbVS45u15ZdBEfdM08OVB
bwo2oqLuTsosRZahriqUeQ7P81AURRd8U5tx5vM5gFbX91wXDedwe7I2+1QK6vLU25o+o39H
noevZf0lFUBMiqINIo1YwU3zNP09BpMgODgBEmg9ZkpSUyOcC4G1lPJ107RJjwY36mfHAOq0
SJUTNAtDeK4L33UxC0Ns87yVBK6L19stfuXysrs2lwdvqGQ7BT0yqWBKpRZCtMe/MoZAjq1c
po7jIJAl3Sliz0MlGYCOR41aGzHZiNA2f9N9MLSMoNQqWqPfdo0+/lid3wYhRGt/AAclT2gx
XPqcG85xK4vyRp6HbZ53EXaKz44BAHRxgYvJBPuyhAPgaj5H3TTImwYRY6g4Ry0E9nmORRzD
dd32hJrJBHVVHYhiRYhDhFbWNdKyxHI2w4IxVHUN3/MQy0M7VLRZZxjHcRBq6gNd7fqIzLTi
UhtGd12eSqx07KE2Q0jLsjvQ3NS+r96/mrv6Tb1lXy4WVq/ZZ8kAQLuFsuEcTP6dlWWr8shg
UxCG3Snn6iA3P4oAIQ5qCZnyanRjEmgfussYyjTFpq7hu24nUVT6hTqYI5A+7zAMjQddK6YY
W+q8b6U+RZXSobtVTfNJigJ5XWNqUF8oyqbBm/3+oMgZZS4aZd/mOTzHMa7+3bwAPJlMsIjj
TtqbVL/PzgimWGcZJmGIvK6xyfMDHXFbFKg4x7YosN3vwR0HudSD6QF7+kvvC0Yxqc/Xdd0d
6rff7yGE6IheMVSe56iJX1v1QfvT0Tf20Mpu+v4Uf7pqr5d7n8cxZtLJ0NefK1fqmXRA2Ji2
qirss6wtl1/XSGXRA719XddtSUaDl6vmvEuSfPRHJL1vOGgT5wB0RjFFoKpHuC6eL5fdC1Yr
sPKz66u+zahUKGR0k8m/ladnNZkcrVIKJlclYD7sA7j7EUkKOvMZ1RISFTe11+0j0+eFlH5h
z7FGCre3t2Ceh0yeD1c3DRbTKYqiQFVVmEwmcF0XNzc3mEmdXz0H13VRFAXAGFgU4Wo2+7wl
APCO+IFj4gfalUklZum18G1RXtPRQTo8x8E2TZGWJVzHwVKK6pebTbeZR79uSLqcumIPoU9i
6KkPNhvCJlloCZpMFrUyEb9+T3Ecg3EOz3EwJae/c84RyozeqmmwWCwAAIE8+FwtVo7jYBLH
WMp0ks9eAowBAzAPAnwl9wYAh7q+SbcE3qU+29QVtTmHkTa1fLm0HYXNeNXbKEZ8H1XlqIqj
/qdSp+86099CiO6keL0/2sa2IKjPHcdBWpbY5TmeWvZU6H18tkYwcKj+9IGxNgJa1nVnJ+ie
GvU3lQ62dt34Bt3edFYWncfQ54A5BfqhoOv5B753LT3EpBrqz8smRfV7U9fZ6oKqa3Z5jmUc
H/VlexafNQNcTqcIXBc7GZVNyhKB66IWh1mHnuPAdxy82e3wbLHozp3tUzdMxMpYm1pQSw9U
6PsHLjv9WrrqKaKmp9yrNqZ56IRzH9jUHVM7Oh99d5fOLEPSQp+7iTF0iahOnQTeGuEAACAA
SURBVFFjDnm1PmsGWEQRXMbgs/agbXV+wLe3twftpkGAq+kUb/d7VLLaNEXDeXtQh4xKKlBi
EJKp8qqC77rwPQ+FPOaJizYgZ1Nr1EtsxLtNIvr3+sqqMKQCjIXJzjARN3BYwYExhkxm4Iaa
9Bwzpi2RT3+26u8LWel7rC30WTMAICOM0tPjOA7WaYpa99g0DV5st5iH4ZGK0nCON/t9p3NS
UMKr5cabWub8RL4Pjxhwai59L8+UiUmvo2Mq4unTq8dAX7nVePr4fZIhkqnM9Fqbe1e/pz5V
T28/pl8dn7UX6IfNBoy1J5Zf7/ftyZKG9OO0LJFXFSZBAJe8hLppWjdcFMHTTnasmwZpWSIp
y26PwTyKcDmbIfJ9bLLsIOsUONRX9Zc/JMpN7cIwREbO6HUMniwbTF6lSlbUzsheawWVzGdS
3xhjB2kcJvtB/86WvGcqvT7mHugPF6JLM/+sJQCXakXk+/hiseh0dBOuZjM0cofSs/n8QLSX
dY0pUWGUNJnKw/j2eQ7f87qTzz2Zkao2vHhOe+D3gtS51NWZIemg2uouSNqHyS7QVQnal471
et2WKalr7Ha7rh9FhJxzXFxcILAUqR2auyMj79Qm0g8f0fthjB1U6zDZDgfqmRC4kRt74iD4
vBmgbBr8/OYGV9MpFtIvXFpcwq/3e3w5n2MqU6knQYBGCDAhsJBeh4MVTxp6Oxlh1tMAXMdB
U1WomwaZaJO6HMPLU/0BbS6R57rWepgmSaJOxNS9MEMSxWSgxvI+gyDomNxxHMRxjCRJusi1
Pp8+6O2LqoLnOAdReZMxa5IkuhpkYgKXtQfoqf4+awYA0EkAgdYLBMYOUqAVuBD4YbvFj5ZL
ZLLQltoX4LsuYpIhSVfrpYzsmvTmqWWl1Nupl+eTDfY26GqLIlJ1oDZVMXSVawhxHHf9lXXd
Zq9KQl2RGMldbQ0AXYlzVbTMdl99YxVV1RYkYMcuav35fdY2gMImy8DQHrj9qxcX8Hv0yle7
HXZFgV1RtCXYfR8hKaVowliPhE33149PHepP150V4efS3atfP6ZPBRWlDmTJyb7jZE/BkbtT
iE7FHFKddCkS+n63WNCkQb0fzvmZAYA2u3AvCbrmvDcfpeYcZdOAoZUY0zDsvrO5BYHTmMB2
zVAfJhVBfc4Yw3Q6bVdvSVgUYyPGtq2WOk5lANqXEKKTqKWmVg1BN65tRn8XX7nTLD8xcLTZ
nw3nRz5+EwSApKrQkKxC4DjZS/dYqN9jDoyzvTjO+eCeXDo+PeRDBZ9UFWx9LNrWBleu+mP3
RdvmZzLW9b8jGVfRqz0cGPPA4POwSRHHcc4MoJCUJb5fr7vEtDFrTiRFbSn34epVC/p0a5uL
TjdU9ZfXDBAejQHYPEc0o1X/fAxzmvTqU0CfDWUkKl3UPDzHAYQ4KJBLF5FMbqKx7Y8wvQ+6
QJwZgKCQ505VdT2KAdTG+hebDRohUGkb0m3eHPq/iegBuzrje97R3lYuRLunIcuQVRWysjxg
FPo7kfnzygjWz0UbQ9T6Knwq9Ottqp76Th1omBTFQYpKVlVH0XcTTO9EMd+ZATRs8hyNELiY
TAaZQAB4s9+Di3brJJN+bNMKPcbTYiIspW7olZ5pW6W6zaMIgfRIOczsOoyDAKk8BCTPc2RZ
dhCJ1g1H0xzHBtOG7lNPqutjBt91Efs+CpmUCLRZuu7AHIbsgDMDGLArCszCEPMRbkqOttLE
bZYhlRFf9aCrusZtknRRxz7i0lconUj0NpRgAs+Dy1hXOc4mhRhj8D0PAq2rMI5jTGQtHZsq
9r6gqz/6HCjoZ2obZFXXnY0wBiamA85GsBECbZrEPI5HP6BaqhOq8FZZ18iqCqvJpHtRttXI
FiegzEA/G2N89tkike/j7X6PnBwQ2DQNKmLDqHHv680Z+u4UyUgZ3jeUOBmLA1vizr184qg4
x+vdbtR+AYV1lqHmHNdyn+/cUEdUeVv63I59xEuJ0sYQpjgCNTQZZBUMzlFUFcIwPEgnUKC7
thSoB2iIcIccAKfCtnDcxRt1NoJHoDL4vPsggO6cAZq5SV+QqtxGiWvI86KrPJQBgGOjcQjK
sJwEATZpilJKAMd1uz3OusSyBZOGxhmLuxDxfRgAwFkCvA9s8xwMpxOKTf/VVQWTZ0n3JNmg
SwYG4Oli0dkuEO/2FaiqFfoY6v8x92Sbg25s30Ui6FLxVJy9QO8Jkee15xNbqhXrL5uutC4J
3w8RkLqW9qN/ZrrW9P9SGsKqarWah+2EzLGrrq6u9AXP7qrGjCV+2+JxZoAHxrYosC9LbPO8
25pHVRg92mpa+YeYQL9WYYxO3mhRUzU/dVqm+syV6pBpLF2SDI051tA9Bad6q0y21NkN+h4g
0AbUGNDt/qIPX08joBvYGWu3ZlK9+9QXPKQCNQbPkpoHnYuaD61WPZYxTfMa89mpqGWd11Og
j3NmgPeE0PcPIrZKBaAMoAfNdOKiqpFLcpR0N+LYvBxOxjSpAxTKUGeMdWcmP2SMwBT3GCtN
FFy5hXXM+QmmOZ+9QO8Rb5MEW5l+DMjVV2OATDtsw2Qg6gl1dOU+JSFN7Umm11RkG6PNy+Q4
TluBTSMyNf59YHL3nsIE6sznRB531Qcb4372G2IeEgxtpQnfdVHVNa73e2RVhcjzMAtD3KYp
LqfTbtVROrnjONhkWVulgtgIjB2WD7Hp+5Rg6UtW15VN0+bQMHZY1Rqt4eu57tFKrH5T1Y2O
peat2prmpc/NBjr2WA+TkmSTMDxIST8VZwZ4QMzCEM9kdQgh2gP4rpMESVniNsvw1WLRvmxJ
XGrHE+ccEOIoONa3IipiMTGH7hEK5DZK/aT10PNws99jLg8Lp9frhq46Hsq3VGTWr9WJWv+8
D7rjQCGV9VNVKsc8iu6tip0Z4AGRFAXSMEQkDVl1rOleVoYoqgqNLNxE6/vUTdOtwrpNoNDn
96YrNnBYEl19Riva0etjeQKlDkfm/VP1zPf9o91pJtCx9fH6MNRuEgQQaCXt7B6rPsXZBnhA
cAA/bLdYywxLIdoKB8sowleLBaayrlBaFAfei7Jp2m2VBjedaSWkMAXAhvTpg7KNRJcfWqGV
G3dI7aHz0pnB1u8YMMbufBYYBbWfzgzwwBBoU6q5RpBAu3J5slyKy9pjfJKigECb276V9XbG
GoQH4w5ICFu1i5pz1JIYKCP1jU1jBH1zPVX1+dA4B8LeExzGsC8KlE2DvMdFxwBMwxDbLGs3
gMO8UnJCoDpMapO++qoS7CYp4Uv7QP1f9BxH2s1bW/3HEPeYCHUfEw+BC4GfvXmD2yQZNRel
Xp4Z4D2g5Bxv0hTfbzaj9u9WnGOT5/CIr1/Xv23Xmj7TV2UBHPRNrw09rzuoTwgB31LpgcJ0
/sEY96WCHlDTif0usQaHMXx9cYGZzMAdfd1Jrc84CQLAdZLglayipkMR3VeLBRzHwYvttjWk
y7JLqVbt6DX0b5O6c0D84vCsY9McjvqAmblMh+vpY9vG0CWTbt/otsJd1MDA80YVNaA4M8B7
Bkd7ImXZNNiT86zoj+c4WMVxd3rlNsuwkglqnHNUsqjVGLeojkKelWVb1fWAWtk0KLWNMXp7
+puqE2ODUTqD0v0FdyX+u+LMAB8AtRD4br0GCNHrK+JCeog2eQ7HddtivaKNHt/KWpZ90H3v
CnEQHGwkt12riDD0vF6JoUB3jz1UesTQ/O5bjsWEcxzgA0EAuJH7g59MpwenvgNtXstXi0VX
pKvmHMnbt/BdF+GJYp1GcxljXZFenUFMOrhphabfqbZRFKFpmgO36CnuzCGXKO1Tb2tidJtq
NhSHODPAB0QlBLbSO/R8uTwSv4Hr4mo6xSqO8UamURRNAzDWnU6vVkMFk1oxJkfHRCjqc73Y
rw1qLo7mYdKv1ZljrMFssn0oYw55jfTnZMKZAT4wBICsrvFqt8PT2QyODO4A71YrlzF8tVjg
+/UanudhGQTY7XbHfY1UBcaszKovRcw1mU+f4asO93YNXqZTVKKyLI/Kqo81tO8TaT4zwC8J
+7JEsV530civLy66kiZAu3pNfB+1aLcuekEANwi6fJ4+16iNIHSCNkEnRD3/R7++j/hsUqbv
WpvhPaYvWzsqPaqqOri/MwP8EqE23a8MB2MA7SF+ufQApWmKPM/hMoYnk8nBxnWFIcLU1Qbb
2by0ivTQYXaqnck9a3J5UmkypLacApMaBhxnmuoq5NkL9AiwznP8/PYWudT3FdQBek1RIJ7P
wTlvzzCTxE+9I3fxxuxlGoYNY1WsPmmkE2BfFYz7eHdoPpPJU2R7JmcGeCSoOEeeJNgnCTzf
hyszSgPXhev7KIsCWVliGcdHB/WNgcmv7rvukQS4KxEOuSeH/PoP4fe3Gc9nL9BHAicMsZpM
unqdVVWhahoEnodcEn0hK85F96iM1o3XYw9kcuxFT2qBWtH1QlkmaTSUC0RVk4eOKeiSiKpk
ZwZ4RHAA1HUN3/NQcY6Z3CGW5DmcssQkCLqsUS+ewHWHJYHNx68Hx3TjtuG83cJpsRMUkWZV
Bd9xDipK0HGFON7oA62tyYV6irHdFwPQody2QLsl9KwCPSIU5DQU33EAztFUFSLXxUUc44v5
HKJp8Md//Kf4n/+X/xVFUXbX6vaADWXTIJHHviqYqk94rotFFFkrZCtGquRZaRS6z96GPl/+
2PKLDed4sd1iR/Zfj4XnOGcJ8JiwyXNMw7CL/OpJYj/7/gf87//2/0RVlvB9D5vdHis269x6
VVXB931Ust6nuraua3hSZYqDAIHnIS0KxEFg9Mwwxg5ULLpqKqi+i7o+sklMUmDIXapHfofs
BaA9PmmX5/Ac5yB9YywDAmcb4FGBoz1v4OvlEsDhCyyqCv/h//0pNtsdHOagrGr89d/8F/zO
b/5tbDYbcM4RhmGnk19fX2M2m6FpGtR1Ddd1kec54jjG5eVld66xvvJz4mFSUH3qTOC6LpZx
fKQijfHZ97k7bekPAsA2y1A3DeIgQFnXCH2/rXEqNxOdQvzAmQEeHbhFHw48D9MwxGwSQwiB
JM3x8vUb/N7f++0uCuv7fnckahzHqKoKTdMgjttrPM9DHMe9RmZfEE1vJ4RAKPcJ206L1K/v
y+0ZuvZtkmAVx93+BVoNYk6M9bGq19kIfoSoOEfF+dFRrY7j4I/+8A/wr/71/4b1eoNnVxf4
zV//CcIwRETKsAshOkYYInYdaqU3QY+02gxY9ZmuWtF2QgjU8pxhAEcnvesqlJIYF/KcYtP9
nLoPQPV7ZoBHiF2e45Kc3AK0J6LkTYP/8Z/8EX7607/Eb/zkx3h2dXlEgHpEVCcWm4owlKym
+qVEOpR2of9Pr3v58mUnmYIg6KTVbDZDlmVdNbyyLPHkyZPO5foQ7tEDY//evZ3x4NgVBULP
OxDrvufh0vchhMAf/sHvH4X0geOENh19+vEYwlIrse5a1edBCZ26QdW4nHMsFgvU0uslhOjS
q9U+gyAIkJOKbw8VF9DjEmcGeIRohGjP8hKHG04oAdkMvqFkNxOGVn8Kx3G6fQCqva46DXl/
GGsP7ab/q9WdeoBiqfKY5vlQOMcBHiEEgHWamr/TIq4mVUYnaP2nDzRfxwbP81AUhfH8ALrC
mv6m/w/ZJ++D4HWcJcAjhW0b45jVmq7AY1QIGxFTvV9vH55QmY1mrprUtL7cnT5b5S44spnu
1dsZ7w0X0ggGDldxUy1QBV31MP3Y2uuR1zErNOf8aCOM+lyfe9+8bZ+fIrnuirMEeKS4TVPw
OMbE941FrUxQhKZW2j79WSd+9RlVr5Rub7MrdJ1dNzD7jHLT/QwxxxjJdoqEOLtBHzEYY5jJ
FAdTesAphi/N2FR1/hWhdDUyVYJYVXUb3YdWXWoM63PS53UX1WVMDIO6V+8y3pkBHikCUrOf
c466rrHdJ/j2ux/w5HKFr59/edBeXyWBw4CTIhCVIySE6PbzqusYa/f2qtSJoYQ0XXen49I+
bXNTn52q3tikSV/8Q0Gda6BwZoBHClpSsShK/Jv/4//Gy1dvwAXHbDrFP/zDP8CTi9WBr125
KBUcx0EQBEfEptQe/cA8ep2t2oOpHeccvoxR3FVX112+fRhimr7r9UPKzwzwSEF177Kq8Or1
NTa7fXeU6Tfffo/L1fLAH88577I+FXS3Ke0fMKsZjLGjlVKHrodXVXU0dl/ahB4Zpu2HcBep
oc9J4cwAjxQhqcQQhm3asu/7cJoGeV7i9fUNAPOmb4U+28EUYNNdk32Gr4oXKElhqlVkCtTp
7XQG0JnhFMlgwhBznd2gjxQM74g0DAL8i3/2T3D1ZIVJHOKrL57id3/7N48IyBT0MrkSTYRN
29Dzv4xzI5FbJSVsQa8+P76NuKmaRuc8dpOM6XnYcJYAjxSUoBzHwWI+wz/7x/8QeV5iuZiN
6kMnAH0VVMSnt9dXYhsR0/b6gXn0t4kATYwz1tU7BJtxbpICZwZ4pNALYDHGMJtOEYVh76pq
g0kdMX1vUmf6JAYFtUGGIs8V2ZJpYpo+37/pfvQgYN8cqev2zACPFJHvA5rKchfDz6aL620U
9ES3vrZ6/67roqqqNsDkeUbmUca9zWA29avmYrNfbPaBaW+DPp+zDfCRYCzxm3T+U8YYUhn0
TfdHXhWZxar6q+u6y/UvyxKO46BUx50KgbppjnbBjcGYinU6TE6BMwM8UuirvjICTTDp9iZD
khqvAI7cnPq+X5MHSQXlTN8rKCJXxnQYhvA8r0ug68ZgDDdJgq2looNp7upvm9E99rmofs8q
0COEqQ6PSQ1SL3i9XsP3/S4YRU9xVG10lcM4rtT/Pc87PEqVzGG9XqOuaywWC6RpCiHazSyO
43Q5/o7jdOkUwLEqwhjrmO2L5RIFsQdM92sicJPO39eG9qvm47rumQEeI7rDMww+fQr18lUV
uTzPUchjmKIoghACu90Oq9UK8/m8d0y1wirj1EQ8arX1fR+FrAUUx7GxFpGup9OVXCdYGvMw
YciXP3Rf+n3Qfs8M8AjhMNbGAeT/+jZECiEEJpNJZ3SqLYVZlmEymWA+nxtr+piMTvWbeoL0
QNmTJ09Ovh8aGKNuU8ocfarMGL//WE/YORL8EcCzqEA2r0xAskZVhYi455QXm3HL2LuDLkzG
8F1WYB0mSUF/D7lP74I+w/7MAI8QIdHX1ao1ZACPcXGq/4eCTHRFHUqIM42n96P6oKfLj53/
WPR5pvTPaNDuzACPDAzorcisg6onQD+BM8ZQNw0azhFYjGKTv52OY513j0o11oN1VwkzRPy2
cc8M8AgRycOeT/H7KwwRf15V2OY55gP7efXTZ/r61cewre4m1Yfq/ibCTdO0q3eqyqbQNG5X
VohjjKEsy4NKE31zpGOdGeCR4SHq/psgRHsG8NPZ+Dwi4Fj/tzGczRC1rf5jmEoIgbIsUdc1
drsdPM/rNuyo8o+MMex2O7iui9mIe9NdomcGeGSYyA0sY9MfTJ6U++rTCibX5SnelqFodN9+
AwCYTCZd9bg0TTGdTg/OJlbXT6dT3NzcjJobLckInCXAowO3qAs2UCId6w48BfrYNkYYGt9W
YqUPlPFUHMPENK7r4unTp6NOmFEBw25eo2dzxgdB30EPJqKjL1tPfejDKYyip1aY5mBrTz/7
UDCNb8NZAjwyeIY6O9TDo+fH6HgfUkCHzUhWY9uirh8Sum1ieyZnBnhkqLWTTtSq25fvYjNY
+/AQfvexHijbPD8EhsY6M8AjQ1pVaISAq3ldbOoEVX/U37Xa0mg41WUIeq2fMaBZpDYip4w8
tOH+odC38iucGeCRgaM9onQud37pgSJKaPoLVvr5Ns8xC0MwYT+h0YZTiV+pZTTNui+4RdMt
3jdM6qBuM50Z4BEiKcuuKpwJupGnv+RpGCLwvIPCV+8TOiM2QiAty4OAG53zhzaI6dz08c9e
oEeIpCyNu6T0wJONoMIR+3LfJ17vdni920EAXR2j90n4fYmCQ8/gzACPFCYGGLuC9uXvjCGK
u0CpNq7rYhIEaITA690Ov1ivkckU7fcJ03PpcxwonFWgRwjfdY35QHfJD/pQoDbAxWSCfVFg
XxRwGYNnOP3lvrhPP/TaMwM8QtjWZ5ur8dQMyIdmEFM8YOL7SMoSjRB4ud3iq8XioF2faxe4
mzdqTPBNr4l6ZoBHCIF3u8FM0H3qY0U/8P50cd27cjGZoBECt2mK0PPAcMgopt/UYB1S1Wxp
D+r+VKaoDp2pzgzwCHE5mRxsiVTQk9NMaQ+ml95nE9wXai6ms36vZjP4joPVZNLLeHry35BE
G9PGdnqNjjMDPDIErot5GFo3kOj+9vsYxA8JPQ1CCAEIgYXcnE/b6X/rq/iYqLKpP/27MVmp
ZwZ4ZGDo395oysGh0ANkH4Lw6bGttvykbZ5jGgQH9o1qq0eRx4yp/68+OzXwd2aAR4aiaXC9
37dq0ECym00NoARSc45NluFqNnuvfngVdLNVbMvKEhPCAHoBrlPG0u0fW0bq9dtbvHj1BmVV
gnOB/+6/+Z2j/s4M8AixKQq4joOV3PEEHG4hHAJt57K2vlDDeVdwSxHfqaUFh8bsS8V+MpvB
JRJLr0Jn6xOwG/p9KRf/6a9/hn/3f/1Jeyr9bIp//j/8o6N+GGPnQNhjhABwk2XdMUmmFU5X
h4z9SEZYSaNav+4hg2JKClh1bctJkX1Mo0e76SLQ5y0qihJ/8qc/BZdSaZ+k+I9/+VddLhW9
9zMDPFIItOqQLfrbvUBiFB9cTwjF1dpQwhNCdHU8TVB1QEfN2TBPtX9Xrfh6yUZ6nfqxebds
Lk8df/6f/xqMtZIuTXN4nouvn3/VqWfnQNhHAlojtE8N6POajPn85uYGvu93wacwDJGmKYIg
6IhmtVqNqi96MH/HQZIkB0zUNA1838dqtTpS72zQDXrdk6THEX777/w6HMfBd794ifV2izAI
8KPnXxj7PjPAIwbV0G3qis0jJERbelz3hZuIbbVaIU3TrvyIOiaVsbYOqCpnfhcw1h7NqqpK
x3HclXGk96Ubt/S3Pn/atyrQ6zgO8jyXe4cF/tavPMfN7Qb/4O//HtI0RZ5liKLoIF4hxDkd
+lFjn+eYGQrH0i2JSg3SRbsQAklZGk+U0RFFUVdScSz6DHJF0JxzLBaLgxjBkM1hk2g2KdE0
DcIwRJIk2O/38Dyvq/zwW7/+t5Dsd5hOp8iyDJzzoyLBZwZ4xOjz0dBNKCZVyHEczGQxqYfe
fXWqR6rvmj5XJk13oL8pI8znc3DOsVwucXFx0bliGWOYzWYHRXhNkeGzEfyIkVUVbtJ0sJ3J
GBZCwJeHQtsMXBuGvDNjrqe/h+wX09xNer4pwKfSMGjuj+rP87zurAKqdlGcGeCR4zbP8TZN
j/YHmIjT5iWhB2Y8FPQzhU3Q83t0vd+W0mC6NxNTPQTODPAR4DbLsJMHXyicSgCqpOCYVb3P
vaqPrbswh/o1wZbPo6/4pjjAmHvpw9kG+EjwNkkw9X38yZ/+RwjB8Tu/9RtYLuZd9QjgmGB0
0KOPHmoFVbCtzLqbcuhz2oeJ0XSX55h59bU7M8BHAgHg3//Zn+P/+7M/R5rn+Nm33+Nf/k//
tD1NxiIZdBUEODwH+CGYoE8q6e5N03cUJgbR3aMPzbhnFegjARcCuyxHXpYIAx9vr2/wH/70
p0dqgckrpBOayW16F9CV2mbI6rq/vlHlNkkO2utMYJMOffMZ2x44S4CPCtP5FBBA4PsIpj5u
btcHBJIkCSaTCQCgLMvu5VP3n3KLqgrLY1UJE/oM1zGR3ayqEJHyLyYJQvuyMYjOgEOMfU6F
+EjxxZfP8Lu/97v4xTff4uuvvsR///v/7UE+j4qM5nmOPM/h+z4cx+nO7XVdF5xzTKdTFEWB
1WrVuTzvGyvoS7lQBEr/B2MomwYrWf7c1p9O1DSD1eZFov+rKLGpLWMM7I//4i9EdkLC0xm/
fDybTLGcHKdKb7fbbmVXEVL1t1I9iqLoJIKKiqrr78oEdV0fnBCvgxKfSstWjGnzIOmSySRt
dGPZJjFowFC//iwBPkLsygLzOIKDQ5/65eWl0W1If2JtjwFIH3eRBOq6vr0FlHizskReVZiG
IaKe84FVPtKYPm3SQv1tMvoVg50Z4CNEVtf45uYGsefhuZZVCRx6S5QhrIhAr+NJoYzjuzDB
kB2h1J4oCBAFAXypjqlxKdQc9GDbWINY90yZ7Bw15pkBPlI0QqCQOS8mItGJUvf8mAhKfa5U
mjEYCkwdjCEEPELsJsbtixqbDuewjam7fm0G9tkN+hHjajo9IDCba1MR0BhPCWOsy6gciz6v
S59xfEpb0+pPPzepYX3uYYUzA3zEyGXNTX0FHdpRZWtD4cnq0joo8Zjql/a1H4u7MEdf3KNv
DmcG+IixzjIkRdH9b/KC6KBEMuQvNyXRqTEaWWJwyHt0l+jt2PnZVKhTxj4zwEcMAeDFboe0
LI/03r4V3qQK2KAzQTeGEF1u0fs48MIW1R07b72djaHODPCRQwC4TpLueFVTWoIOEyH1tadM
cOBbx+knypwCfU59ks12vS7x9GvPDPAJoGgavNhurQGlMRijDlHD+JSaQmPUmVP6otCDXKZx
dRWJ2kBnBvhEkFYVvr29BfBO/TGtfHfRyRU8z0N1h8MuKNGNwYGhbShl0tfepPqYPlO/zwzw
CaHiHIms4ECJ/i7Eb9O3VfkUGqTqw10kkmlcmxSxxQz6XJ/0/zMDfEIQAH6x2VhXOyoZToFO
jJ7noSgKq/enb4yx46s2QzvTbAEu0/fUPlJ/nyPBnyiG3J2UOEyqyRCRhmHYW3FCMVyapphM
Jp39oFIcaMrFkCFN57rZbOD7PkJ5AqXqI89zeJ6HNE0xm80OtoCqKHJgOHnzzACfGIYUnCRJ
8Vc/+wYAw9WTCzxZLTGZxKePY0mlUN8BwG63Q5IkKIoCQRB0cYOqqgCgZtG1EwAAApBJREFU
K8L15MmT0eNyznFzc4M4budcFEW3ByKVFTRevHiBOI7hui6yLMNqtUKSJLi4uICvJeCdGeAT
g1KDAnnQHtCWWJwFARhj+Pf/z5/hux9+wHaXwHNd/PjXvsY//qM/NPZFA022itK25DnGGKbT
KaYyXYMxhizL4LpuR5xN05xckGs+n3cZrXR7p5IijuMgjmP4vg/G2tpATdN0Fen0OZ4Z4BNE
UpZItM8mvo+IA//5b/4LqqqWh8Vx/OVf/Qy/9Rt/G7/29XNjXyYdmmZx9pVb0QluNpsBeKde
qe85SeobMtQ9z7Mm6qk+JvJsBVsg7ICxrSOd8VHDYQy+48BjDAytm/Q/ffsdFrNWXQgCH5M4
gu97+Ku/+QauLKKlE40idhMBnXqSY18klxrruuF+l/3LY71dZwb4RMGFQCMEaiG6w/aefPkM
X//kxwgmMZIkQ900KMsKz794BsBe4cEUUxjrBu1DXzoz/X2f2IXqxxZFPjPAJww9W9N1HTz/
lef4/b//e1gsZtjtU1xeXuDv/te/ceQtsgWQTiV65fWxuSPfF5TUGAyinfcEf57Y3qyR5Dme
PrvC1XyOZ7NZ5y6kSMsSAsBMqzI9ZucYJXRbNHhMfo/N169ng+p/2xiMzvtsBH+muHr6BAtp
wK6zDA5jeCqZgAah5nGM79drVE2DC3ne71hQgrcxiy3hTX3Xl99vmotupwzhrAJ9pig1781N
mhrrjzLG8Hy1QiTdqKYocx9M+rwJNDrbl+Bmg85gZwY442RUGlMoonUZwywM36UPeF4XCX7f
6Et1oJ+dwjCUcc8q0BkdsqqC7/udAVzXNYqi6A65U1B+exWB7VNJ1Oeqz7u4M4cImxq7Y8ag
8/n/AdMlt2A/RMbSAAAAAElFTkSuQmCC
</thumbnail>
</thumbnails>
</workbook>