From 65c27c7f8c0c46b2a04c16985bdb5667faf65a1a Mon Sep 17 00:00:00 2001 From: natjms Date: Sat, 25 Mar 2023 17:10:24 -0700 Subject: [PATCH] Complete Milestone 4 analysis --- analysis/analysis1.ipynb | 63 +++++++++++++++++++++++++++++++++------- 1 file changed, 52 insertions(+), 11 deletions(-) diff --git a/analysis/analysis1.ipynb b/analysis/analysis1.ipynb index 8bdbe22..0514f67 100644 --- a/analysis/analysis1.ipynb +++ b/analysis/analysis1.ipynb @@ -715,9 +715,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Is there a correlation between geographical stratums and having same-sex partners?\n", - "\n", - "### Visualiztion strategy\n", + "## Visualiztion strategy\n", "Seaborn doesn't provide an easy interface for plotting data over maps. To do this, we will take a best-effort approach to rendering maps over an interval of coordinates and overlaying relevant plots on top of them using Matplotlib. The accuracy of these renderings will be limited by my access and knowledge of GIS tools, however, the goal is to represent the data spatially and the physical maps are entirely ornamental.\n", "\n", "To create a render for a city:\n", @@ -784,6 +782,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "## Is there a correlation between geographical stratums and having same-sex partners?\n", + "\n", "### Quantitatively measuring queerness\n", "\n", "Before we attempt to visualize queerness geographically, it's worth taking the time now to consider what that actually means.\n", @@ -841,12 +841,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The distinction is somewhat subtle but it's clear that when we factor in gay bars and pride parades, we narrow our scope. This makes quite a bit of sense, as not all queer people frequent bars and not everyone has the privilege of celebrating their queerness. Going forward, we will measure the queerness of a neighbourhood based only on how many same-sex partnerships reside there.\n", + "The distinction is somewhat subtle but there remains a meaningful difference. It's clear that when we factor in gay bars and pride parades, we narrow our scope. This makes quite a bit of sense, as not all queer people frequent bars and not everyone has the privilege of celebrating their queerness. Going forward, we will measure the queerness of a neighbourhood based only on how many same-sex partnerships reside there.\n", "\n", "### Measuring gaybourhood clusteredness\n", - "To facilitate answering this research question, we've added an additional column to the gaybourhoods dataframe that discretely classifies neighbourhoods into 7 categories labeled `0` through `6`, with zero indicating there are very few same-sex partnerships and 6 indicating that there are many. The choice to divide the dataframe into seven categories was arbitrary, although inspired by Alfred Kinsey's research into the fluidity of human sexuality[^3].\n", + "To facilitate answering this research question, we've added an additional column to the gaybourhoods dataframe that discretely classifies neighbourhoods into 7 categories labeled `0` through `6`, with zero indicating there are very few same-sex partnerships and 6 indicating that there are many. The choice to divide the dataframe into seven categories was arbitrary, although inspired by Alfred Kinsey's research into the fluidity of human sexuality[^3]. Similarly to the Kinsey scale, our factor will be linear. The consequence of this is that the vast majority of the observations will be lumped into the lower categories. Nevertheless, this is a fair approximation that will make further analysis significantly easier.\n", "\n", - "As seen below, virtually all gaybourhoods have a same-sex partner index of less than 25:\n", + "As seen below, virtually all observed neighbourhoods have a same-sex partner index of less than 25:\n", "\n", "[^3]: https://en.wikipedia.org/wiki/Kinsey_scale" ] @@ -919,7 +919,7 @@ "source": [ "Excluded from the above graph is all neighbourhoods with a Kinsey index of 0, which won't be relevant to our next line of inquiry. It shouldn't come as a major suprise that as an under-represented minority group, most recorded neighbourhoods would have a Kinsey index of `0`. We now turn our attention to measuring their clusteredness.\n", "\n", - "Without trying to quantify this question any further, we can preliminarily visualize the clusteredness of queer populations as we did before to g" + "Without trying to quantify this question any further, we can preliminarily visualize the clusteredness of queer populations as we did before using topological diagrams. We predict from personal experience that queer communities will tend to cluster together, representing crests in their respective diagrams:" ] }, { @@ -968,7 +968,15 @@ "source": [ "As expected, in all 15 cities studied, we see a relatively sharp \"peak\" in gay residents in one area. Further, neighbourhoods tend to get less queer radially outwards of this peak.\n", "\n", - "Another way we can quantify the clusteredness of queer communities more numerically is to assess how likely a given" + "Another interesting observation is that with the exception of Chicago and Miami, all of the queerest communities in each city tend to be clustered around the geographical city centre. This is in line with conventional wisdom that the inner-city tends to be inhabited primarily by poor people and other marginalized groups, while the more privileged groups tend to live outside the city, commuting in for work.\n", + "\n", + "Our use of KDE plots to illustrate this phenomenon works, but isn't ideal. It'd debateable (and outside the scope of this project) whether or not queerness is discrete or continuous in a spatial environment. The observations collected in the gaybourhoods dataset certainly are discrete, however, and by visualizing them using a KDE plot we are effectively \"undoing\" that discretization. While this may be a meaningful action to take, it will inevitably introduce error. We deem this acceptable because our goal is to illustrate the clusteredness of queer communities on a macro level.\n", + "\n", + "Another way we can quantify the clusteredness of queer communities more numerically is to assess how likely a given neighbourhood is to be surrounded by neighbourhoods with a Kinsey index that is equal to or higher than its own. To do this, we algorithmically select a small group of observations in the vicinity of a given observation and calculate the mean Kinsey Index of that group, assigning it as a new column to the original observation as its \"Neighbourhood Kinsey Index.\"\n", + "\n", + "This approach is loosely inspired by differential calculus, in how the differential of a function is considered the \"instantaneous\" rate of change, or what the rate of change of the function would be about a point.\n", + "\n", + "While it has proven to be sufficient, there is one notable limitation. Our data fundamentally discrete, and there is a limit to how small the smallest possible neighbourhood about an observation can be." ] }, { @@ -1005,6 +1013,19 @@ "_=mean_nk_scatter.set_title(\"NKI vs. Same-Sex Partnerships\", fontsize=18)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The graph on the left shows that neighbourhoods with a higher Kinsey index tend to have a higher Neighbourhood Kinsey Index on average, which strongly suggests that queer neighbourhoods tend to cluster together. Interestingly, this is less the case with neighbourhoods with a Kinsey index of 6. This makes sense when we consider that the number of neighbourhoods that fall into that category is small, and we've defined it such that nothing can be higher.\n", + "\n", + "Neighbourhoods with a KI of 1 are about three times more likely to be surrounded by other queer neighbourhoods than neighbourhoods with a KI of 0. This further illustrates the fact that queer communities tend to cluster together.\n", + "\n", + "The graph on the right illustrates the same fact by measuring NKI versus the Same-Sex Partnership Index. While the results are consistent, this graph reveals that there's quite a bit of variance.\n", + "\n", + "All together, it's very clear that there is a strong coorelation between geological strata and wanting/having same sex partners." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1062,14 +1083,25 @@ "_ = axes[0][0].legend(handles=[orange_patch, blue_patch])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the exception of Washington DC, Miami and Chicago, the peaks in the respective topological maps almost completely overlap, implying a relationship between queerness in a given community and voter turnout for the Democratic Party. This aligns with conventional wisdom once again in that urban queer people tend to support liberals more often than conservatives in elections.\n", + "\n", + "Similar to before, using a weighted KDE plot to illustrate election results can be somewhat misleading in certain cases, as some cities contain fewer counties than others.\n", + "\n", + "Alternatively, we can use our Kinsey index once again to assess this relationship more categorically:" + ] + }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHTCAYAAACz7y7zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4xElEQVR4nO3dd1gUV9sG8Htp0gUUG/aygCIoKIpiA6yoiAVLwB71tUWNSSypxmg0GruxRSwoVrCgIoq9YG+xx4KCigWQIn3n+8NvN667KAPILnL/rssr4czszDNzpj0z58xIBEEQQEREREREJIKOpgMgIiIiIqLih4kEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQRaUxISAhsbW0REhKisRg8PDzg4eGhsfmT9pg0aRJsbW0RExOT599o6/ZTWPvWokWLYGtrizNnzhRSZKpsbW0REBDwyaYv1pkzZ2Bra4tFixZpOhQFbThWiqGN6/BzoG37CgDoFeTHf/31F+bPnw8A2LdvH2rWrFkYMZV4tra2Sn/r6+vD1NQUFStWRN26ddGuXTu4u7tDV1dXQxF+PgICAnD27Fncvn07T+OHhIRg8uTJouaR12kXZ5MmTUJoaCgiIyNRuXJlTYejRGwdF6WHDx8iIiICJ06cQHR0NF69egVzc3M4OTlhwIABaNq0aa6/DQ0NxYYNG3Dv3j3o6Oigbt26GDx4MNq0aaMy7r1797Bnzx7cvHkTN2/exNOnTwEA169fh56e6mngzZs3OHjwII4ePYrr16/j2bNnkEgkqFGjBjp37gx/f38YGBjkeTnldfAuY2Nj1KhRA+3atcPAgQNhaGiY5+nR2wu1/v37Y/To0RgzZoymw1FYtGgRFi9e/MFxXF1dsX79+iKKSFVMTAw8PT3h6+uL33//XWNxFBfybS23ejty5AjGjRsHmUyGP//8E15eXhqIUrM8PDwQGxurlefATy3fiYQgCNi6dSskEoni/7/77rvCjK3EGz16NAAgJycHycnJuHv3Lnbu3Ilt27bBwcEBc+bMQY0aNTQcZclib2+vqBe52NhYhIaGwsbGBr6+vhqKrHhq27YtnJycUK5cOU2HohELFizA3r17Ubt2bbRq1QqlS5fGgwcPcOjQIRw6dAhTp05F//79VX43a9YsrF69GhUqVECvXr2QlZWFvXv3YsSIEfjhhx/g7++vNP7x48exZMkS6Orqolq1aihVqhQyMjJyjev8+fP45ptvYGFhgSZNmsDLywtJSUk4dOgQZs2ahYiICKxduxalSpUStby+vr6wsbGBIAh49uwZDhw4gHnz5iEyMhIbN26Evr6+qOkVtgkTJuDLL79E+fLlNRpHYdD0vuXq6gpXV1e1w2xsbIo4GnEcHR2xd+9eWFpaajoUrbd9+3b8+OOPMDExwV9//QUXFxcAXIclSb4TiRMnTiA2Nhbdu3fH8ePHERoaivHjx4u6S0Ufpu4u08uXL/Hrr78iPDwcgwYNwvbt21GmTBkNRFcy2dvbw97eXqnszJkzikRCm+4MFgdmZmYwMzPTdBga06JFC3z55ZeoW7euUvnZs2cxePBgzJ49Gx06dFC6GLx48SJWr16NqlWrYtu2bShdujQAYMiQIejRowdmzZqF1q1bK90Va9myJRo2bAhbW1sYGhoq7p7lxtraGn/88Qc6dOigdEz/9ttv0b9/f1y6dAkbNmzA4MGDRS2vr68vmjRpovh73Lhx8PX1xdWrVxEWFqbxRLxcuXKfTVKr6X3L1dW12B4PjYyMUKtWLU2HofWWL1+OP//8ExUqVMCqVatQp04dxTCuw5Ij330ktm7dCgDo1asXunTpgoSEBBw8eFBpnCFDhsDW1ha3bt1SO429e/fC1tYWs2bNUipPTEzE3Llz0bFjRzg6OsLFxQUDBgzAiRMnVKbxbrvBY8eOISAgAC4uLkrNgw4ePIiJEyeiffv2aNCgARo0aIDu3btj3bp1kMlkamN78OABxowZg8aNG6NBgwbo06cPjhw58sF2is+ePcO0adPg6ekJBwcHNGnSBCNGjMDVq1c/vDJFKFu2LObNmwdXV1c8ffoUy5YtUxknv+vv5MmT6NevHxo2bIimTZti8uTJSEpKAgDcuHEDw4cPR+PGjdGwYUOMGDEi13bEDx8+xLfffosWLVrAwcEB7u7u+Pbbb/Hw4UO14+fk5CA4OBh9+vSBi4sLHB0d0bZtW0ydOlXpN++21d29ezd69eqFhg0bKrVPDgkJwZgxY+Dp6QlHR0c4OzujT58+2Llzp9I8Y2JiYGtrq2huYWtrq/hXWO0PP9ZGVF3b6o9tz+8Oj4qKQkBAABo2bAhnZ2cMGzYM9+7dUzuv58+f45dffoGHhwccHBzQtGlTjB49Gv/884/KuB9qEy1fb5MmTVKU2draIjQ0FADg6empWI95aTee2/4kXzdv3rxRXBg7ODigbdu2WLFiBQRB+Oi0xdax2HlduXIFY8eORfPmzeHg4IBWrVrhxx9/RFxc3Edjk+vevbtKEgH8dzc3KysLly5dUhq2adMmAMCIESMUSQQAVK5cGf369UNmZqbK+qxZsyacnJzy3HzI3t4eXbt2VbkxZGpqikGDBgGASlOl/ChXrhzatm0LAIrj5Lv7zdWrVzFs2DC4urqq9F0ICwtDQEAAGjVqhPr166Njx45YunQpMjMzVeZz/vx5jBgxAi1btoSDgwOaN28OPz8/lSY4ufWREAQBQUFB8Pb2Rv369dGiRQtMmzYNycnJH1w+MTHKt8v4+Hj88MMPcHd3h4ODA7y9vbF9+3aVOOVPqhYvXqy0bcv329z2raioKPzwww/o1KkTnJ2d4ejoiM6dO2Px4sUffEqlCdnZ2diwYQP8/Pzg7OwMJycndOvWDUFBQbmeu69evYpx48YpnX8GDx6MvXv3Anh7fPP09ATwtnngu+tOvq4+dOwWc35791gaHh6Onj17wsnJCa6urhg/fryoY8W7jhw5gj59+qBBgwZo3Lgxxo4dqzL/CRMmKB3/3rd//37Y2tpi2rRpoucvCAKmT5+OP//8E7Vr18amTZuUkggg93UYEBAAW1tbZGdnY9myZWjXrp3i+PnHH38UaP8FgLS0NCxfvhw+Pj5o0KABGjZsiN69eyMsLExpvOPHj8PW1jbXpsqZmZlo0qQJmjRpojamvBKzX7877yVLlsDLywsODg7w8PDAvHnzPhhHXveVx48fo1GjRnB1dVW5mfTmzRt07NgR9vb2ovpE5euJxMuXL3Ho0CFUr14dzs7OMDU1xerVq7F582Z06tRJMZ6vry9OnDiBHTt2KF14yMkvPt69CxUbG4uAgADExsaiUaNGaNGiBdLS0nD48GEMHToU06ZNg5+fn8q09u/fj+PHj6Nly5bo06cPnjx5ohg2Z84c6OjowNHREeXLl0dycjKioqLw22+/4dq1a/jjjz+UpnXv3j307dsXr1+/RuvWrWFra4vHjx9j9OjRaNmypdp1cv36dQwePBivX7+Gu7s72rVrp0iu+vXrhyVLlqBVq1biVnQudHR0MHLkSJw9exZ79uzBlClTIJFICrT+Dh06hCNHjqB169bo06cPLl26hJCQEMTExODrr7/GwIED4eLigp49e+LOnTs4fPgwYmJisGvXLujo/JePXr16FYMGDUJqaio8PDxQu3Zt3L9/H7t27UJkZCQCAwPh6OioGD8zMxMjRozAyZMnUbFiRXTu3BmmpqaIjY3FwYMH4eLigurVqyvFGhgYiJMnT6JNmzZo0qSJ0sn8559/Ru3atdG4cWNYW1sjMTERR48exbfffosHDx5g3LhxAABzc3OMHj0aoaGhiI2NVWqupA2P3T+0PQNvTySRkZFo0aIF+vTpg3v37uHo0aO4du0a9uzZAysrK8W4jx8/Rr9+/fD8+XM0bdoU3t7eePr0KcLDw3HkyBEsWrRIbbv6vBo9ejQOHjyIW7duoX///jA3NweAAt8NzcrKwpAhQ/D8+XO0bNkSurq6OHjwIObOnYvMzEyVJmbvE1PHYue1bds2/PjjjzAwMICHhwcqVKiA6OhobN26FYcOHcKWLVtQqVKlAi2/vO/C+32hoqKiALx9mvG+li1bYunSpYiKisLYsWMLNH+xceWXPFGTH8PkLl++jOXLl8PFxQU9evRAQkKCounT5MmTERISggoVKqBdu3YwNzfH5cuXsWDBApw+fRqBgYGKOI8dO4bhw4fD1NQUHh4eKF++PBITE3H//n1s3Ljxo9sRAPz2229Yv349rK2t0bt3b+jp6SEyMhJXrlxBZmam2ifxYmKUS0pKQt++fWFgYID27dsjMzMT4eHhmDJlCnR0dBTnSnkb9NDQUJUmRB87fq1cuRIPHjxAw4YN0apVK2RmZuLixYtYtGgRzpw5gzVr1mhF/7usrCyMGDECJ06cUPTNKVWqFM6cOYNff/0VV65cUTl3b9myBT///DN0dHTg4eGB6tWr49WrV/jnn38QHByMTp06wdXVFf3798e6detgZ2en1J7//afN7xN7fpPbuHEjDh06BA8PDzRu3BhXr17F3r17cevWLezcuVNUS46IiAgcP34cXl5ecHV1xc2bN7F//36cOXMGwcHBir6qffv2xZ49e7B582a1Tcw2b94MAOjTp0+e5w28PWd/99132Lt3Lxo2bIhly5bBwsJC1DQA4Ouvv8aFCxfQokULtGrVCseOHcOqVasQHx+PmTNnKsYTs/8mJSVhwIABuHHjBurVq4cePXpAJpPhxIkT+Prrr3H37l2MHz8eAODu7o6qVati3759mDJlisr5av/+/UhMTMTgwYML3NImr/s18PZ4OG7cOERGRqJq1arw9/dHVlYWtm/fjjt37qidvph9pUqVKpg+fTq++uorfP311wgKClIch3755Rfcv38fY8aMUXpy/FFCPixfvlyQSqXCsmXLFGW+vr6Cra2t8PDhQ0VZenq64OLiIjRr1kzIyspSmsbz588Fe3t7wdfXV6nc399fsLW1FcLCwpTKX79+LXTt2lWoX7++8OLFC0X59u3bBalUKtja2gpHjx5VG290dLRKWU5OjvDtt98KUqlUuHz5stKw/v37C1KpVNiwYYNS+ZEjRwSpVCpIpVJh+/btivKsrCzBy8tLcHBwEM6cOaP0m2fPngnu7u5C8+bNhYyMDLXxvU8+jw/JyMgQ6tatK0ilUuHRo0eK8vyuP3t7e6XYc3JyhIEDBwpSqVRo3LixsHPnTqXpTZ48WZBKpcKBAwcUZTKZTOjQoYMglUpVxt+zZ48glUqF9u3bCzk5OYryuXPnClKpVBg+fLjK+snIyBBevXql+HvhwoWCVCoVnJychOvXr6tdL+rqOiMjQ+jfv79Qt25d4dmzZ0rD/P39P7quPyYqKkqQSqWCv7+/2vKFCxeq/V2bNm2ENm3aKJV9bHt+t75OnTqlNGzOnDmCVCoVVqxYoVQ+ePBgQSqVCkuXLlUqv3DhgmBvby+4uroKKSkpinL5eo6KilKZ/+PHjwWpVCp89913SuXfffedIJVKhcePH6td1tzIl+fd/UkQ3q4bqVQqDB06VEhLS1OUv3z5UnBxcRFcXFyEzMzMPM3jY3Usdl73798X6tWrJ3h5ealsT6dOnRLs7OyEkSNH5im23MTExAgODg6Ck5OTkJiYqChPTU0VpFKp0KBBA7W/e/XqlSCVSgU3N7cPTl++zO8fl/NiyJAhglQqFYKDg/P8G3kdvL9NxcXFCW5uboJUKhVCQ0MFQfhvv8ltHvJtZtSoUUr1JQj/bbtr1qxRlI0ePVqQSqXCzZs3Vab17vFFENRvxxcuXBCkUqng5eUlJCQkKMrT09MFPz8/QSqV5rof5zVGQfjvuD9lyhQhOztbUX737l3B3t5e6Nixo9L4Hzu+5LZvPXr0SJDJZCrjz5s3T5BKpcKePXvUxqvueKCOfHx/f39h4cKFav9dunRJZdnfP37KpzNt2jSl9ZGdna32/HP37l2hbt26QuPGjYU7d+6oxPX06VPF/+d2HJNTt27zc36TL0PDhg2FW7duKf1mwoQJatd3buT1KZVKhUOHDikNW7NmjSCVSoX+/fsrlXt7ewsODg5CfHy8UvmjR48EW1tboXfv3nmat3x9+Pr6Kq4Lhg8frrJtq/vN+9un/Fjg6+urtD+lpqYKXl5egp2dnfD8+XNFeX723/fPgenp6cLgwYMFW1tb4caNG4ryVatWCVKpVFi/fr3KtOVx3r9/P9dlfJf8mPr+OVDsfr1r1y5BKpUKfn5+Qnp6uqI8ISFB8PT0LJR9RRAE4aeffhKkUqkwZ84cQRAEISQkRJBKpUJAQIDSNpwXops2Cf/fsVpHRwfdunVTlHfv3h2CIGDLli2KslKlSqFjx454+fKlSrOaXbt2IScnR2kat27dwtmzZ9GuXTt4e3srjW9ubo4xY8YgIyMD+/fvV4nL09Mz16cFVatWVSnT0dFRPBo+fvy4ovzp06eIiopCtWrVVDL1Vq1aoVmzZirTOnLkCB49egR/f3+VzL98+fIYOnQoXrx4gdOnT6uNLz8MDAwUdwESEhIAFGz9eXt7K8Wuo6MDHx8fAECdOnXQtWtXpfHl9fZus7WLFy/i/v37aNiwocr4nTp1gouLCx48eIALFy4AeNukaePGjTA0NMQvv/yikvUbGBgo3VmX8/PzU9scBFBf1wYGBvjiiy+QnZ1dqHXwKX1oewberk83NzelMvmTpmvXrinKnj17hhMnTqBSpUoYOnSo0vjOzs7w9vZGYmIiDhw4UIjRF57vv/9eqTlOmTJl4OnpieTkZDx48EAj8woODkZWVhamTp2q0inXzc0NHh4eOHz4MFJSUvIVR2ZmJiZOnKh4EvJu8yX507fcnvbIy+VNEgtbUFAQjh8/Dnt7e/To0UP070NDQ7Fo0SIsXLgQU6ZMgbe3N169egVHR0eVY5a9vb3au6Xr1q2Dnp4eZsyYodJUa+TIkbCwsMDu3btVfqeuY7i648v75M1dRowYoXTntVSpUpgwYYLa3+Q3RiMjI0yePFnpiUDt2rXh7OyMe/fuITU19aPxfkyVKlVUnv4AwMCBAwEonw8L4uzZs1i8eLHaf5cvX/7gb2UyGYKCgmBtba2yPnR1dTFp0iRIJBKldRgcHIzs7GyMHDlSpZkNAFSoUKFAyyP2/PYueXOed/Xq1QuA8vE6L5o2baryBNnf3x9Vq1ZFVFSUUnOVvn37IjMzU9H6Q27Lli0QBEH004jr16/j1KlTqFGjBhYvXlygN61NnDhRaX8yNjZGly5dIJPJ1Da5/dj+m5CQgF27dsHBwQFffvmlym+/+eYbCIKgtM10794dpUqVUjydkbt//z7Onj2LJk2aFMoLbcTs1/Ljzfjx45WW2cLCAiNHjlSZdn72FeDtE1M7OzusXLkSQUFBmDZtGqysrBQteMQQ3bQpKioKjx49gru7u9JJtHPnzvj9998RGhqKcePGKR5B+/r6YsuWLQgNDUXr1q0V4+/YsQP6+vro3LmzokzeFjglJUVt28T4+HgAbyv5feoeJ8olJCTg77//xtGjRxETE4M3b94oDX/+/Lni/2/evAkAaNCggdqV6eLiglOnTimVyQ+KT548ybVNJfC2yVRhNW8CoNJ2uyDrz8HBQaVM3umwXr16KsPkdf/s2TNF2Y0bNwAg10diTZs2xYULF3Djxg00btwY9+/fR3JyMpycnES9JeVDdf3kyROsXLkSp0+fxtOnT5Genq40PL9tUovah5YRUF9fFStWBAC8fv1aUSavExcXF7VvxGnatCl27dqFGzduKCX12sDMzAzVqlVTKZdfEBTmxbKYecn397Nnz6q9CHj16hVycnLw8OFDtfX0ITk5Ofjmm29w8eJFdOrUCUOGDBH1+08pIiICM2bMgLW1NRYtWpSvNyy9e0FjbGyMatWqYdCgQRg0aJDK9NTtA2lpabh16xYsLS2xdu1atfMwMDBQ6ivUpUsXREREwM/PDx07dkTTpk3h7Oyc5wtL+T6krnmIi4uLSjOg/MQoV61aNZiamqqUv7sdmpiY5Cnu3Lx58wbr1q3DgQMH8PDhQ6SmpiqdS949HxZEQV5L++DBAyQmJqJ69er466+/1I5jaGiodC6T75fqmvwVBrHnt3fVr19fZXx1x+u8eH/awNsLRhcXFzx69Ag3b95UNG/z8fHBnDlzsHnzZsWLEbKyshAaGorSpUujY8eOouZdo0YNZGZm4sGDB5g+fTp++ukntUlpXuT1HJbX/ffatWvIycmBRCJRe/2TnZ0NQPn6x9LSEh07dsSOHTtw8eJFODs7A4DihrjYRCs3YvbrGzduQEdHR/H2q3epOwblZ18B3iZX8+bNQ48ePfDrr79CIpFgwYIF+XrZhOhEQp65de/eXancwsICHh4e2L9/PyIjI9GhQwcAb+96Vq9eHYcOHcLr169RunRpXL9+HXfu3IGXl5dSRpmYmAgAOHnyJE6ePJlrDO8nAsDbTsjqJCUloWfPnoiJiYGjoyN8fHxQunRp6OnpISkpCevWrVPqwCK/45fbm5DUlcvjDg8PzzXm3OLOr4yMDMXOJl+HBVl/6u5wyk+QHxom3zmB/9ZdbhuitbW10njyizOxr1rMra4fP36Mnj17IikpCY0aNYK7uztMTU2hq6ureEVrQTpNFaXcllFO3g/hXfJ2ju92rJKva/m6f9/7daJN1C0j8N9y5uTkaGRe8v3s77///uA0xe7v8iQiPDwcHTt2xB9//KFykpbvi7nVl7w8t+XJr4MHD2LChAmwsrLCunXrUKVKlXxNZ926dXlue6tuH0hKSoIgCIiPj//otwrk2rVrh+XLl2P16tUICQlRnMPq1auHr7/+Gs2bN//g7z90TtDT01N5vWV+YpT71Nt8VlYWBgwYgKtXr0IqlaJTp06wsrJSTH/x4sVacYyU72MPHz784Dp8906uvJ4+1at7xZ7f3vWhc2huncZzk9u5QV7+7vxNTU3RtWtXbNq0CVFRUWjatCkOHTqEFy9eYMCAAaJf32xtbY3Zs2dj4MCBCA4ORkZGBn777TfRd7AB9du6unWS1/1Xvs1cu3btg0953n+q169fP+zYsQObN2+Gs7Oz4glOmTJlFC+CKCgx+3VycjJKly6t9kaNuvN4fvYVuRo1asDW1haXLl1C7dq14e7u/sHlyI2oRCI+Pl7xZqYJEybk+lh3y5YtikQCeNsMZv78+di7dy/69u2rtpM18N/Oltu70z8kt6x469atiImJUXt35NKlS1i3bp1SmTxrfPXqldrpqSuXx7106VLF2yA+tQsXLiA7Oxtly5ZVvOaxIOuvMMjn/+LFC7XD5eXydSzfucQ+JcitrgMDA5GYmIiZM2eqJLphYWEqj3c/NfnB9d1k611JSUm5HmDye5fnffI6efnypdrh79fJu/NWd9GijQlHUZOvqwsXLqi9y5QfWVlZmDhxIsLDw9G5c2fMnj1bbYdXY2NjlC9fHnFxcXj+/LnKRU10dDQAqLygoCD27duHiRMnomzZsli7dm2hTvtD1O0D8vVdt25dUftz69at0bp1a7x58wZXrlzBkSNHEBwcjOHDh2PHjh2oXbt2rr+V70OvXr2CsbGx0rDs7GwkJCQo3R3Nb4xFITIyElevXkX37t2VOrQCb59EiE18PhX5Om/btm2eY5L/Ji4urtD2S3XTz+v57VPJ7VguL38/aenbty82bdqEzZs3o2nTpooL8d69e+dr/hUrVkRQUBAGDhyIkJAQZGRkYPbs2Wo/bFlY8rL/ypd74MCBoj4a6+TkhLp16yo6XR87dgyJiYn48ssvNfJdGzMzM7x+/RpZWVkq81e37eVnX5FbsWIFLl26BEtLS9y9exfLly/H//73P9Exi0ojQ0NDkZWVhXr16qFnz55q/1lZWeHUqVN4/Pix4nfdunWDjo4OduzYgaysLOzZsweWlpYqzXycnJwAvH3VV2GRn1jbtWunMuzcuXMqZfK3Nly+fFntnQJ17R8/RdwfIpPJFI+w3m0aVtRxvE++7nJ73Zz8dWLyplI1a9aEubk5bt++XShNjj5U17nFJL/YL8y723LyJOHd5l9y0dHRRXJRLu9LIk883/d+nQBQtMmXf/34XerargL/rUexd9eKQmHXcYMGDQAU3n6WmZmJr776CuHh4ejWrRv++OOPD741R/61a3Vt2Y8dO6Y0TkHt2rULX3/9NcqVK4egoKAiSyJyY2Jigjp16uDu3buKO3FiGBsbw83NDZMnT8bw4cORlZWlWGe5ke9D6o4hFy5cUNmuChpjXsm3ETHb9aNHjwBA7Z1WdedDTZGfGy5fvoysrKw8/Ua+X+alj0d+1p3Y89unoq6ecnJyFNcm7795ys7ODs7Ozjhw4ACuXLmCU6dOoXHjxgX6xoO1tTXWr18Pe3t77NmzB1999VWRPMn60P7r6OgIHR2dfB2X+/Xrh4yMDOzYsQNbtmyBRCLJd6JVUHXr1oVMJlN7ralu28vPvgK87fOzcOFC1KhRA2FhYahRowYWLVqUr/UnKpGQtxv7+eef8dtvv6n917t3bwiCgG3btil+V7FiRTRt2hSXL1/GunXrEB8fj86dO6tkW/Xr10ejRo1w4MABpd+/6/bt27k+LVBHfrf+/Qq4ceMGli9frjJ+pUqV4OrqiujoaMX72uWOHTum0j8CeNsxtmrVqti4cSOOHj2qNo5Lly4hLS0tz3Hn5tWrVxg/fjzOnj2LSpUqYfjw4Yphn2L9ieHi4oIaNWrgwoULKs28wsPDcf78eVSvXl3R9k9XVxf9+vVDeno6fvrpJ5UDUWZmpqJfR17I24W+X9fHjx/PdX3IO3u9/3rVwlCzZk2YmpoiMjJSaZ2np6dj+vTphT4/dSpUqIDmzZsjNjZWpb32lStXEBYWhtKlSyu9AlHeNj0kJEQp+Xj69CmWLFmidj6fcj0WVGHH9sUXX0BfXx8zZ85U2+E7MzMzzwdjeYfqyMhI9OzZEzNnzvxoMwF5u91ly5YptSWOiYnBxo0bYWBgoPJELj9CQ0Px3XffKe5A5rc5U2EbOHAgsrKyMGXKFLX9ZF6/fo3r168r/j537pzaJFq+T36sw6j8yfmyZcuUEoOMjAz8+eefhRJjfsi3a3UJf25yO0Y+fvwYc+bMKVA8hUlPTw/+/v548eIFpk+frtLXDXj7BOXff/9V/N23b1/o6elh6dKlSuVy797QMTc3h0QiEbXuxJ7fPpWoqCgcPnxYqSwoKAiPHj1CkyZN1L7+t2/fvsjKysKYMWPy1claHSsrK6xduxaOjo44ePAgRo0a9Um+Q5LX/bdMmTLo0qUL/vnnHyxZskRtkvjo0SOlm9xynTt3hpmZGVatWoWzZ8+iefPmGjveyY/d8+fPV1qfiYmJavtA5Gdfef36Nb7++mvo6Ohg3rx5KFu2LObPnw9dXV1MnDhR9A2QPD+LOnPmDB4+fAipVPrBjqA9e/bEsmXLsH37dowZM0bxuKtbt244deoU5s2bB0C1WZPc3LlzMWDAAEydOhXr16+Hk5MTzMzM8OzZM9y5cwd37tzB5s2b8/w1Zx8fH/z999+YMWMGzpw5g2rVqiE6OhpHjhxB27ZtFR+peddPP/2Evn374pdffsGxY8cU35GIiIiAp6cnIiMjlU72+vr6WLRoEYYOHYphw4ahYcOGsLe3h6GhIZ49e4Zr167h8ePHOHHiBIyMjPIUNwBFhyGZTIbk5GTcvXsXFy5cQFZWFhwdHTFnzhyVt44U9voTQyKRYNasWRg0aBDGjx+PsLAw1KxZEw8ePMDBgwdhYmKC2bNnK627UaNG4cqVKzh8+DDat2+P1q1bw8TEBE+fPsXJkyfx7bff5vmiqF+/fggJCcFXX32F9u3bo1y5crh79y6OHz+Ojh07qq1rNzc3hIeHY8yYMWjVqhVKlSqFSpUqFUrHY319ffTv3x9Lly5Ft27d0LZtW2RnZ+PUqVNF+gXdX375BX379sXs2bNx8uRJODg4KL4joaOjgxkzZig9jndyckLjxo1x7tw59OrVC02bNsXLly9x+PBhuLu7qz35urm54e+//8YPP/yAdu3awcTEBObm5vD39y+SZfyQwq7jWrVq4bfffsPUqVPRuXNntGjRAtWrV0d2djaePHmCCxcuwNLS8qN9poC3x5qjR4/C0tIS5cuXV5uoubq6KvUrcHZ2xqBBgxAYGIiuXbuiffv2yMrKwt69e5GYmIgffvhB6avWwNtmqbNnz1b8LX/T29SpUxVNiL788kvFXcqoqChMmTIFMpkMTZo0UfsBTjMzM8WbfopSz549cf36dWzcuBFt27aFu7s7KlasiNevXyMmJgbnzp1D9+7dFR/amj59OuLi4uDs7AwbGxvo6+vj+vXriIqKgo2Njcrbot7n4uKCgIAArF+/Hp07d0aHDh0U35EwNzdX225ZbIz5UaNGDZQvXx579uyBnp4eKlWqBIlEAh8fn1y/JdGmTRtUq1YNgYGBuHPnDuzt7fH06VMcPnwYrVu3LtQbAWfPns31Y5x52XZGjhyJW7duYdOmTTh8+DCaNm2K8uXL49WrV4iOjsbFixcxfvx4RbO02rVr46effsJPP/2Ebt26wdPTE9WrV0dCQgL++ecfmJiYYP369QDePjVycnLC+fPn8fXXX6NGjRqKb0/Y2dmpjSc/57dPoU2bNhg9ejS8vLxQrVo13Lx5E8eOHYOFhQV++ukntb/p0KEDZs6cibi4OFhaWqp9ap8fpUuXRmBgIIYPH45jx45h2LBh+Ouvv1SaABaEmP33xx9/RHR0NBYuXIhdu3bB2dkZZcuWxfPnz3Hv3j1cu3YNf/75p0qSYGRkhG7duim2D009jQDeJjV79+7FoUOH0LlzZ3h6eiI7Oxvh4eGoX7++4qniu8TuK1OmTMGTJ0/w/fffK55g2dnZYdKkSZg2bRomTZqk9mPHuclzIiF/GiF/ZVluKleujGbNmuHkyZM4fPiw4hFqu3btMG3aNKSkpEAqleb6+K9ChQrYvn07goKCEBERgd27dyMnJwdly5ZF7dq14e/vD6lUmtewUb58eWzYsAFz5szBhQsXcOLECdSsWRM//fQT3Nzc1F5cyr/UOG/ePERFRSEqKgq2trZYvHgx7t27h8jISJV2kHZ2dti5cycCAwMVX8DW0dGBtbU16tatizFjxqh0yvsYeXs3fX19mJiYwMbGBt26dUO7du3g7u6u9oBV2OtPLCcnJ2zbtg1//fUXTp8+jcOHD8PS0hLe3t4YOXKk4mM5cgYGBli1ahU2bdqEHTt2YMeOHRAEQfHFWzF3d+zs7LBu3TrMnz8fR48eRXZ2Nuzs7LB48WKYmZmpretevXrhyZMn2LNnD1atWoXs7Gy4uroW2huMxo4dCyMjI2zZsgVbtmxB2bJl0alTJ4wZM+ajFzCFpUqVKti+fTuWLl2KY8eO4ezZszAxMUGLFi0wYsQItTcGli5ditmzZyMyMhLr169H9erV8c0336B58+bYt2+fyvgtWrTApEmTsGXLFqxduxZZWVmwsbHRikTiU9Sxj48P7OzsEBgYiDNnzuDEiRMwNjZGuXLl0L59+zy/DUX+BeWEhIRcn/aMHj1apYPypEmTIJVKsWHDBsWj+Hr16mHIkCFqPy745s0bte31d+zYofh/X19fRSLx5MkTRTO13L6+amNjo5FEAnibgLVs2RKbNm3CqVOnFB0UK1asiCFDhii9nnP48OE4ePAg/vnnH5w+fRoSiQSVKlXCiBEjMGDAAKXX6+Zm6tSpqF69OjZs2IBNmzbBwsICbdu2xYQJExSvyS5IjPmhq6uLxYsXY+7cuQgPD1e8fcnFxSXXRMLY2Bhr167FnDlzcPbsWZw/fx5VqlTByJEjMWjQILXHyPw6e/Zsrs2A8rLt6OvrY+nSpdi5cydCQ0Nx5MgRvHnzBpaWlqhcuTK++uordOnSRek3fn5+qFOnDlavXo2zZ88iMjISFhYWsLW1Vbl2mT17NmbOnIkTJ05gz549EAQBFSpUyDWRAMSf3z6Fdu3aoXfv3li2bBmOHj0KPT09tGvXDhMmTMj1VaUGBgbo0qUL1q5dC19f3wJ/YO1dpqamWLVqFUaOHIlTp05hyJAhWLlyZaFNX8z+a2pqivXr12PLli0ICwtDREQEMjIyULZsWVSrVg2TJ09W+wp/4G3yL//opIeHR6HFL5b87UkrVqxAaGgogoKCUK5cOfTo0QOjRo1S+wYwMfvK+vXrcfDgQXh4eCAgIEBpOl988QVOnz6NAwcOYM2aNXk+vkuE998hSh/09ddfIywsDPv27SuSgwYRERFRQQQEBODcuXMIDw/XeF8nbRQSEoLJkyfjf//7H8aNG6fpcIqVT/sMrpiSyWRqe8efPn0a+/btQ+3atZlEEBERkda7evUqzp49C3d3dyYRamRnZyMwMBB6enqF9u2IkuTTva+rGMvKykLr1q3RpEkT1KxZE7q6uvj3339x8uRJ6Ovr48cff9R0iERERES52rhxI+Li4hRNrceOHavpkLTK+fPnce7cOZw9exZ37tyBv79/gb+AXhIxkVBDnpVGRUXhypUrSE9Ph6WlJTp06IBhw4YpXgdIREREpI1WrVqFZ8+eoUqVKpg9e/YHX5RTEp0+fRqLFy+GhYUF/Pz88M0332g6pGKJfSSIiIiIiEg09pEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0dramAhMEATIZu9poAx0dCetCi7A+tAfrQnuwLrSDjo5E8WV7ovxiIkEFJpFIkJT0BtnZMk2HUqLp6enA0tKEdaElWB/ag3WhPVgX2sPKygS6ukwkqGDYtImIiIiIiERjIkFERERERKKxaRMVCl1d5qSaJq8D1oV2YH1oj7zWhUzG/l5ERGIwkaACEwQB5uZGmg6D/h/rQruwPrTHx+pCJhOQkJDKZIKIKI+YSFCBSSQSXI17gNTMNE2HQkSULyYGRnAsX4NvFCIiEoGJBBWK1Mw0JDORICIiIiox2HiXiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEiVMREQE/Pz80KBBAzRu3BgjRozAnTt3NB0WERERERUzTCRKkK1bt2LMmDFIS0vDxIkTMWLECNy+fRt9+vTB7du3NR0eERERERUjEkEQBE0HQZ/e69ev4eHhAVNTU+zZswempqYAgCdPnsDb2xv169fHunXr8j39049vIDkzrbDCJSIqUmYGRnCrUhcJCanIzpZpOpzPlp6eDiwtTbietYCVlQl0dXk/mQqGW1AJERkZiZSUFPTq1UuRRABApUqV0L59e5w5cwZPnz7VYIREREREVJwwkSghrly5AgBo2LChyjB52bVr14o0JiIiIiIqvphIlBBxcXEAgAoVKqgMk5c9e/asSGMiIiIiouKLiUQJkZb2tv+CgYGByjB5WXp6epHGRERERETFFxOJEsLIyAgAkJmZqTJMXmZoaFikMRERERFR8cVEooQoX748APXNl+Rl6po9ERERERGpw0SihHB0dAQAXLp0SWXY5cuXAQD169cvypCIiIiIqBhjIlFCeHl5wcTEBFu3bkVKSoqi/MmTJwgPD4erqysqVqyowQiJiIiIqDhhIlFClC5dGt9++y2ePXuGvn37IigoCKtXr4a/vz8AYOrUqRqOkIiIiIiKEz1NB0BFp0+fPrCwsMDff/+NP/74A/r6+mjUqBHGjRsHOzs7TYdHRERERMUIE4kSpkOHDujQoYOmwyAiIiKiYo5Nm4iIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISTU/TAdDnwcTASNMhEBHlG49hRETiMZGgAhMEAY7la2g6DCKiApHJBMhkgqbDICIqNphIUIFJJBIkJaUhJ0em6VBKNF1dHZibG7EutATrQ3vktS6YSBARicNEggpFTo4M2dm8WNIGrAvtwvrQHqwLIqLCxc7WREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFo/I4EFQpdXeakmiavA9aFdmB9aI+irAt+1I6IShImElRggiDA3NxI02HQ/2NdaBfWh/YoiroQZDLEJ7xhMkFEJQITCSowiUSC9OgrkKWnaDoUIiKN0TE0hWE1J+joSJhIEFGJwESCCoUsPQWytCRNh0FERERERYSNd4mIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhE09N0AFQ0VqxYgRs3buDGjRt49OgRdHR0cOPGDU2HRURERETFFBOJEmLu3LkwNzeHvb093rx5g/j4eE2HRERERETFGBOJEuLAgQOoWrUqACAgIICJBBEREREVCPtIlBDyJIKIiIiIqDAwkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIROMH6UqIHTt24MmTJwCA2NhYCIKApUuXKoaPHDlSU6ERERERUTEkEQRB0HQQ9OkFBATg7NmzuQ6/fft2gab/5vZJyNKSCjQNIqLiTMfIHMa2zZGQkIrsbJmmw9FKeno6sLQ04TrSAlZWJtDVZcMUKhg+kSgh1q9fr+kQiIiIiOgzwlSUiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItH0NB0AfR50DE01HQIRkUbxOEhEJQ0TCSowQRBgWM1J02EQEWmcIJNBJhM0HQYRUZFgIkEFJpFIkJSUhpwcmaZDKdF0dXVgbm7EutASrA/tUZR1IZMJTCSIqMRgIkGFIidHhuxsXixpA9aFdmF9aA/WBRFR4WJnayIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINH5HggqFri5zUk2T1wHrQjuwPrRHcasLftSOiIoLJhJUYIIgwNzcSNNh0P9jXWgX1of2KC51IZMJSEhIZTJBRFqPiQQVmEQiQXRsPNIzszUdChFRsWZooIdqNlbQ0ZEwkSAircdEggpFemY20tKzNB0GERERERWR4tFglIiIiIiItAoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhE09N0AFQ0Hj58iN27d+PkyZN4/PgxUlNTUalSJTRr1gzDhg1DuXLlNB0iERERERUjTCRKiG3btmHDhg1o06YNOnbsCENDQ1y+fBkbN27Erl27EBwcjFq1amk6TCIiIiIqJiSCIAiaDoI+vWvXrqFatWowNzdXKt+8eTN+/PFHdOjQAQsWLMj39G8/eI609KyChklEVKIZGerDtkY5JCSkIjtbpulwCp2eng4sLU0+2+UrTqysTKCryxbuVDDcgkqI+vXrqyQRAODt7Q0AuH37dlGHRERERETFGBOJEi4uLg4AULZsWQ1HQkRERETFCROJEk7enKl79+4ajoSIiIiIihMmEiXYsmXLsH//fnh5ecHX11fT4RARERFRMcJEQsvkpe97SkpKgeezdu1azJs3D66urpgzZw4kEkmBp0lEREREJQcTCS3Tr18/PHr0KNfhR48eVXSQzq/AwEDMmDEDbm5uWLFiBYyMjAo0PSIiIiIqeZhIaJnHjx/Dx8cHQUFBSuUpKSmYOnUqhg8fXqCPx61YsQK///47WrRogeXLlzOJICIiIqJ8YSKhZfbs2YM2bdpg+vTpGDBgAGJjY3Hq1Cl07doVu3btwrhx47B58+Z8TXvZsmWYO3cu2rRpg6VLl6JUqVKFHD0RERERlRT8IJ2WCg8Px7Rp0/DmzRtkZGTA3t4eM2fOhK2tbb6mt2HDBkybNg1ly5bFhAkToKen/FFzExMTeHl55TtefpCOiKjg+EE6Kir8IB0VBr2Pj0KaYG1tDWNjY8THxwMA7O3tUaVKlXxP79q1awCAly9fYsqUKSrDbWxsCpRIEBEREVHJwicSWiYzMxPz5s3DunXrULt2bfz22284fvw4li5digoVKmDGjBlo3LixpsNUwScSREQFxycSVFT4RIIKA7cgLePj44N169Zh6NCh2LZtGxwcHPC///0PW7duhampKQYMGIAZM2ZoOkwiIiIiKuGYSGih4OBgjB8/Hvr6+ooyOzs7bN26FSNGjMDGjRs1GB0REREREZs2aZ2MjIyPvk3pxo0bqFu3bhFFlDds2kREVHBs2kRFhU2bqDCws7WWkScRmZmZuH79Ol69egVnZ2dYWVkpxtG2JIKIiIiISh6molpo3bp1cHd3R79+/TBmzBjcvn0bABAfH48mTZpg27ZtGo6QiIiIiEo6JhJaZvv27ZgxYwZatGiB3377De+2PLOyskLTpk2xd+9eDUZIRERERMREQusEBgbC09NT8QXq99WrVw93797VQGRERERERP9hIqFloqOj0bJly1yHW1hYIDExsegCIiIiIiJSg4mEljE3N0dCQkKuw//9919YW1sXYURERERERKqYSGiZli1bYsuWLUhKSlIZdvfuXWzduhUeHh4aiIyIiIiI6D/8joSWiYuLg5+fHwRBQJs2bbBlyxZ07doVOTk5iIiIgLW1NbZu3ar0OlhtwO9IEBEVHL8jQUWF35GgwsAtSMuUL18eISEhaNGiBfbt2wdBELBz504cPnwY3t7e2LJli9YlEURERERU8vCJhJaLj4+HTCaDlZUVdHS0N++Ljo1Hema2psMgIirWDA30UM3G6rO9Y88nEtqDTySoMPDL1lquODx9EAQB1Wy0P04iouJAJhMgk/EeHxFpPyYSGrZ48WLRv5FIJBg1atQniCZ/JBIJkpLSkJPDu0uapKurA3NzI9aFlmB9aI/iVhdMJIiouGAioWHqEgmJRAIAeL/VmUQigSAIWpdIAEBOjoyPqbUE60K7sD60B+uCiKhwMZHQsFu3bin9HRcXh2HDhqFOnToYMGAAatSoAQC4f/8+1q5di3v37mH58uWaCJWIiIiISIGdrbXMyJEjoaenh4ULF6odPnbsWOTk5GDJkiVFHNmHseOc5rETo3ZhfWgP1oX2YF1oD3a2psLALUjLREVFoWnTprkOb9q0KU6fPl2EERERERERqWIioWVKlSqFy5cv5zr80qVLKFWqVNEFRERERESkBvtIaJkuXbpg/fr1MDc3h7+/P6pWrQoAePToEdavX4+wsDAEBARoOEoiIiIiKumYSGiZiRMnIiEhAUFBQdiwYYPiI3QymQyCIMDb2xsTJ07UcJREREREVNKxs7WWunXrFo4dO4bY2FgAgI2NDVq2bAk7OzsNR6ZecXk/++esuL0r/3PH+tAexakuPvdvSLCztfZgZ2sqDEwkqMDk37YgIqKCEWQC4hNSP9tkgomE9mAiQYWBTZu0WGpqKpKSklQ+TAcAlSpV0kBE6kkkEqRGv4IsPVvToRARFVs6hnowqVYGOjqSzzaRIKLPCxMJLZORkYHFixdj27ZtSExMzHW8mzdvFl1QeSBLz0ZOWpamwyAiIiKiIsJEQsv8/PPP2LFjB7y8vODi4oLSpUtrOiQiIiIiIhVMJLTMgQMH0KtXL0ybNk3ToRARERER5Yq9bLSMRCJB3bp1NR0GEREREdEHMZHQMp6enjh16pSmwyAiIiIi+iAmElpm5MiRiImJwQ8//IB//vkH8fHxSExMVPlHRERERKRJ/I6Elnn3g3Mf+jaDtr21Kfl2HN/aRERUALpG+jCzLf9Zf2OB35HQHvyOBBUGdrbWMqNGjeLH3YiIiIhI6zGR0DJjxozRdAhERERERB/FZ1pERERERCQan0hogYiICNG/adeu3SeIhIiIiIgob5hIaIGxY8dCIpEgr/3eJRKJ1nW2JiIiIqKShYmEFli3bp2mQyAiIiIiEoWJhBZwdXXVdAhERERERKIwkSgh4uPj8ccff+D69euIi4vDmzdvYG1tDScnJwwdOhT16tXTdIhEREREVIwwkSghkpOT8eDBAzRr1gyVKlWCkZERYmNjERoaCj8/PyxbtgwtWrTQdJhEREREVEzwy9YlXFxcHNq0aYNGjRoVqK8Gv2xNRFQw/LI1FSV+2ZoKA7egEq5s2bIoVaoUkpOTNR0KERERERUjbNpUwmRlZSE5ORk5OTl4+vQpVq9ejTdv3qB169aaDo2IiIiIihEmElrmypUrcHJy+mTTv3jxIvr376/428zMDF9++SVGjRr1yeZJRERERJ8fJhJapnfv3qhWrRq6du2Krl27okqVKoU6fTs7OwQGBiIzMxMPHz7Ezp07kZqaiszMTOjpcXMgIiIiorxhZ2sts3v3buzevRunTp1CTk4OnJyc4OPjg44dO8LCwqLQ5/f69Wv4+Pigdu3aWLVqVb6nw87WREQFw87WVJTY2ZoKAxMJLRUfH4+9e/ciLCwMly9fhr6+Plq0aIGuXbvCw8MDBgYGhTavadOmYcOGDYiMjETlypXzNQ0mEkREBcNEgooSEwkqDGzLoqWsrKzg7+8Pf39/PHr0SPGkYvz48TAzM0P79u3h4+ODRo0aFXhe6enpAICkpKQCT4uIiIiISgamosVAqVKlYGRkhFKlSkEQBEgkEkRGRiIgIAA9evTAv//++9FpvHz5Um15TEwMIiMjYWZmhlq1ahV26ERERET0meITCS2VkpKC/fv3Y/fu3Th37hwkEglatmyJUaNGoU2bNtDR0cGBAwcwa9YsTJ48GVu3bv3g9JYvX45Tp06hZcuWiuZL9+/fx44dO/DmzRv8/vvvKFWqVFEsGhERERF9BphIaJmDBw9i9+7dOHLkCDIyMlC/fn1MmTIFnTp1gqWlpdK4HTp0QFJSEqZNm/bR6bZp0wZxcXHYv38/4uPjkZ2djXLlyqF169YYMGAAHB0dP9UiEREREdFniImElhk9ejQqVqyIgQMHwsfHBzVr1vzg+HZ2dujSpctHp9usWTM0a9assMIkIiIiohKOiYSWWbt2LZo0aZLn8R0dHfk0gYiIiIiKHDtba5n3k4jk5GTk5ORoKBoiIiIiIvWYSGiha9euYciQIXByckKTJk1w9uxZAG+/LfG///0PZ86c0XCERERERFTSMZHQMhcvXkS/fv0QHR2Nrl27Qib774M9VlZWSElJwebNmzUYIREREREREwmtM2/ePNSqVQt79+7F+PHjVYY3adIEV65c0UBkRERERET/YSKhZa5du4bu3bvDwMAAEolEZXj58uVz/bgcEREREVFRYSKhZfT09JSaM70vLi4OxsbGRRgREREREZEqJhJaxsnJCfv371c77M2bNwgJCUHjxo2LOCoiIiIiImVMJLTM2LFj8c8//2DYsGE4duwYAOD27dvYunUrunfvjvj4eIwcOVLDURIRERFRSScRBEHQdBCk7PTp0/j5558RHR2tVF61alVMnz4drq6uGoosd8m345CTlqXpMIiIii1dI32Y2ZZHQkIqsrNzb+JanOnp6cDS0uSzXsbiwsrKBLq6vJ9MBcMvW2shNzc37N+/Hzdv3sTDhw8hCAKqVKkCBwcHtR2wiYiIiIiKGhMJLWZvbw97e3tNh0FEREREpIKJhJa5efMm7t27h86dOyvKjh8/jmXLliEzMxOdO3fGgAEDNBihejqG3JSIiAqCx1EiKm541NIyf/zxBwwNDRWJxOPHjzF69GhYWFigXLly+P3332FoaIjevXtrONL/CIIAk2plNB0GEVGxJ8gEyGTsukhExQMTCS1z69YtDBkyRPH3zp07oaOjg9DQUFhZWWHcuHHYtGmTViUSEokESUlpyMlhxzlN0tXVgbm5EetCS7A+tEdxqgsZEwkiKkaYSGiZ5ORkWFhYKP4+evQomjdvDisrKwBA8+bNFa+F1SY5OTK+gUNLsC60C+tDe7AuiIgKF9/7pWWsra1x7949AMDz589x/fp1NG/eXDE8NTUVOjqsNiIiIiLSLD6R0DKenp4ICgpCZmYmrly5AgMDA7Rt21Yx/Pbt26hSpYoGIyQiIiIiYiKhdcaNG4f4+Hjs3LkTZmZmmDlzJsqWLQsASElJQXh4OL744gsNR0lEREREJR0TCS1jYmKCuXPnqh1mbGyMY8eOwdDQsIijIiIiIiJSxkSiGNHR0YGZmZmmwyAiIiIiYiKhjV6/fo2wsDDExMTg9evXEATlVwFKJBLMmDFDQ9ERERERETGR0DrHjx/H2LFjkZaWBlNTU5ibm6uMI5FINBDZh+nq8k1SmiavA9aFdmB9aI/iUhf8hgQRFTcS4f3b3aRRnTt3RmZmJhYtWgRbW1tNh5MngiBoZXJDRFScCIKA+PjUzzqZ0NPTgaWlCRISUvlNDw2zsjLR+uSatB+fSGiZ6OhofPvtt8UmiQDePiGJfxON7Jx0TYdCRFQs6ekawsq4GnR0JJ91IkFEnxcmElqmevXqSE1N1XQYomXnpCNLlqbpMIiIiIioiPCZlpb56quvsHHjRsTExGg6FCIiIiKiXPGJhJaJioqClZUVOnXqhGbNmqFixYrQ1dVVGe/777/XQHRERERERG+xs7WWsbOz++g4EokEN2/eLIJo8u558m02bSIiyid9HSOUM7P97Dshs7O19mBnayoMfCKhZW7duqXpEIiIiIiIPoqpKBERERERicZEgoiIiIiIRGPTJg2zs7ODjo4OLl++DAMDA9jZ2X30424SiQQ3btwoogiJiIiIiFQxkdCwUaNGQSKRQE9PT+lvIiIiIiJtxrc2FUMymQw6OtrVKo1vbSIiyj++tYmKGt/aRIWBW5AWOHHiRJ7HzczMxKhRoz5hNEREREREH8dEQguMGjUqT8lEamoqhgwZgiNHjnz6oIiIiIiIPoCJhBaoU6cORo0ahWPHjuU6TkJCAvr3749z587h22+/LcLoiIiIiIhUMZHQAmvWrIFUKsXo0aNx9OhRleFxcXH44osvcOvWLcyYMQODBg3SQJRERERERP9hIqEFTE1NERgYCHt7e4wZM0ap6dLDhw/Rt29fxMTEYMGCBejevXuhzFMmk8HPzw+2trYYOHBgoUyTiIiIiEoOJhJawtTUFKtXr0bdunUxZswYHD58GDdv3kS/fv2QmJiI5cuXw8vLq9Dmt3btWty9e7fQpkdEREREJQsTCS1iYmKC1atXo379+hg7diwCAgIgk8mwdu1auLm5Fdp8Hj9+jAULFmDcuHGFNk0iIiIiKlmYSGiB69evK/49ePAA48ePh7W1NbKzszF58mTo6OgojXP9+vUCze/7779H7dq1ERAQUEhLQEREREQlDb9srQV69Oih8jVr+XcCJ02apFIukUhw8+bNfM1ry5YtOH/+PLZv3651H7UjIiIiouKDiYQWmDlzZpHMJy4uDrNnz8agQYNgZ2dXJPMkIiIios8TEwkt4OvrWyTz+fnnn2FpaYnRo0cXyfyIiIiI6PPFRKKE2LNnDw4dOoTAwEAYGhpqOhwiIiIiKuaYSJQAmZmZmD59Otzd3WFjY4Po6Gil4enp6YiOjoaJiQnKli2roSiJiIiIqDiRCPJevfTZSkpKQuPGjT86XqdOnTBv3rx8zeN58m1kydLy9VsiopJOX8cI5cxskZCQiuxsmabD+WT09HRgaWny2S9ncWBlZQJdXb50hQqGTyRKACMjIyxYsEDtsK+++gpSqRSjRo1CxYoVizgyIiIiIiqumEiUAPr6+ujQoUOuw8uUKfPB4URERERE7+MzLSIiIiIiEo1PJEq427dvazoEIiIiIiqG+ESCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItH0NB0AfR70dA01HQIRUbHFYygRFUdMJKjABEGAlXE1TYdBRFSsCYIAmUzQdBhERHnGRIIKTCKRICkpDTk5Mk2HUqLp6urA3NyIdaElWB/ao7jUhUzGRIKIihcmElQocnJkyM7W3hN0ScK60C6sD+3BuiAiKlzsbE1ERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicbvSFCh0NVlTqpp8jpgXWgH1of2KGl1wQ/bEVFRYSJBBSYIAszNjTQdBv0/1oV2YX1oj5JSF4IgQ3z8GyYTRPTJMZGgApNIJMhIvgpZdoqmQyEiKtF09ExRyswROjoSJhJE9MkxkaBCIctOgZCTrOkwiIhKNJmmAyCiEqVkNBglIiIiIqJCxUSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWh6mg6Aio6trW2uw3bv3g2pVFqE0RARERFRccZEooRp1KgR/Pz8VMorVqyogWiIiIiIqLhiIlHCVKlSBT4+PpoOg4iIiIiKOfaRKIGysrKQkpKi6TCIiIiIqBhjIlHC7N+/H05OTnBxcUGjRo0wceJExMTEaDosIiIiIipm2LSpBHFwcED79u1RvXp1ZGZm4sKFC9i6dSuOHz+OjRs3olatWpoOkYiIiIiKCYkgCIKmgyDNOXr0KIYNGwZ3d3f8/fff+Z5OWsIpCDnJhRgZERGJJdE1g5FlMyQkpCI7W6bpcFTo6enA0tJEa+MrSaysTKCry4YpVDDcgkq4Vq1awcnJCVFRUcjIyNB0OERERERUTDCRIFSuXBnZ2dlITEzUdChEREREVEwwkSA8fPgQ+vr6sLS01HQoRERERFRMMJEoIRISEtSWh4WF4fr163B3d4eBgUERR0VERERExRXf2lRC/PXXX7h48SKaNm2KihUrIisrCxcvXkRERASsra0xdepUTYdIRERERMUIE4kSokmTJrh//z52796NhIQECIIAGxsbDBw4EF9++SXKlCmj6RCJiIiIqBhhIlFCeHp6wtPTU9NhEBEREdFngn0kiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhJNT9MB0OdBR88UMk0HQURUwunomWo6BCIqQZhIUIEJgoBSZo6aDoOIiAAIggwymaDpMIioBGAiQQUmkUiQlJSGnBw+k9AkXV0dmJsbsS60BOtDe5S0upDJBCYSRFQkmEhQocjJkSE7+/M/QRcHrAvtwvrQHqwLIqLCxc7WREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFo/I4EFQpdXeakmiavA9aFdmB9aI/iWhf8sBwRaTsmElRggiDA3NxI02HQ/2NdaBfWh/YobnUhyATEJ6QymSAircVEggpMIpEg+eUj5GRlaDoUIqLPgq5+KZiVrQodHQkTCSLSWkwkqFDkZGUgJytN02EQERERUREpXg1GiYiIiIhIKzCRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCSanqYDoKKVkpKClStXIiIiArGxsTA0NES1atXg7+8PHx8fTYdHRERERMUEE4kSJC4uDv3790dCQgJ8fX1Ru3ZtpKWl4eHDh3jy5ImmwyMiIiKiYoSJRAny7bffIjU1FTt37kTFihU1HQ4RERERFWPsI1FCXLhwAVFRURg6dCgqVqyInJwcpKamajosIiIiIiqmmEiUEEePHgUAVK1aFWPGjIGTkxOcnZ3h7u6OpUuXIicnR8MREhEREVFxwqZNJcS9e/cAAFOnTkXlypUxffp0AEBwcDAWLFiAp0+f4tdff9VkiERERERUjDCRKCHkzZiMjIywYcMGGBgYAAA6deoEb29vbN26FYMGDULNmjU1GSYRERERFRNs2lRCGBoaAgC6dOmiSCIAwMDAAF26dIEgCDhz5oymwiMiIiKiYoaJRAlRoUIFAIC1tbXKMHnZ69evizQmIiIiIiq+mEiUEA0aNAAAPH36VGXYs2fPAABlypQpypCIiIiIqBhjIlFCeHp6wtzcHDt37kRKSoqiPDU1FaGhodDX14e7u7sGIyQiIiKi4oSdrUsIMzMzTJ06Fd999x169uyJnj17QiKRYPv27YiLi8P48eP5kToiIiIiyjMmEiVIt27dYGlpiZUrV2LJkiWQyWSQSqX4888/4e3trenwiIiIiKgYYSJRwrRq1QqtWrXSdBhEREREVMyxjwQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREoulpOgD6POjql9J0CEREnw0eU4moOGAiQQUmCALMylbVdBhERJ8VQSZAJhM0HQYRUa6YSFCBSSQSJCWlISdHpulQSjRdXR2YmxuxLrQE60N7FNe6kDGRICItx0SCCkVOjgzZ2cXnBP05Y11oF9aH9mBdEBEVLna2JiIiIiIi0SSCIPC5KRVYcWou8DnT1dVhXWgR1of2YF1oD9aFdtDRkUAikWg6DCrmmEgQEREREZFobNpERERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEk1P0wFQ8RUREYFVq1bhzp070NfXh4uLCyZMmACpVKrp0D47Dx8+xO7du3Hy5Ek8fvwYqampqFSpEpo1a4Zhw4ahXLlySuNnZ2dj9erV2L59O2JjY2FhYQFPT0+MGzcOlpaWGlqKz5dMJkOfPn1w5coVuLm5Yc2aNUrD09LSsGTJEuzduxfPnz9HuXLl4O3tjZEjR8LIyEgzQX9GUlJSsHLlSkRERCA2NhaGhoaoVq0a/P394ePjoxiP9fDppaSkYO3atQgPD0dMTAwMDAxQuXJldO/eHX5+ftDX11eMy/ooHCtWrMCNGzdw48YNPHr0CDo6Orhx40au44s9PyQkJGD+/PmIjIxEYmIibGxs0LNnTwwaNAh6eryMLOkkgiAImg6Cip+tW7fi+++/h1QqRe/evZGRkYGgoCC8fv0awcHBsLW11XSIn5U5c+Zgw4YNaNOmDZycnGBoaIjLly9j586dMDU1RXBwMGrVqqUY/5tvvsGuXbvQpk0beHh4ICYmBmvXrkXVqlWxefNmGBsba3BpPj+BgYFYuHAh3rx5o5JI5OTkYODAgTh79ix8fHzQuHFj3Lp1C8HBwWjcuDECAwOho8OHw/kVFxeH/v37IyEhAb6+vqhduzbS0tLw8OFDWFtb43//+x8A1kNRyM7ORu/evXHjxg1069YNTk5OyMzMREREBM6dO4cuXbpgzpw5AFgfhcnW1hbm5uawt7fH/fv3ER8f/8FEQsz5ISUlBb1798aDBw/Qr18/2Nra4ty5c9i5cye6d++OmTNnFsUikjYTiERKTEwUnJ2dhZYtWwrJycmK8tjYWKFBgwZCQECABqP7PF29elV4/fq1SvmmTZsEqVQqjB07VlF26tQpQSqVCiNGjFAaNzw8XJBKpcKiRYs+ebwlyaNHjwQnJydhzZo1glQqFQYMGKA0fOvWrYJUKhV+/fVXpfK///5bkEqlQmhoaNEF+xnq37+/0Lx5c+HJkycfHI/18OmdPHlSkEqlwu+//65Unp2dLfj4+Ah2dnaKcwbro/BER0cr/t/f31+wt7fPdVyx54f58+cLUqlUWL16tVL5tGnTBKlUKpw9e7YQloCKM6b7JFpkZCRSUlLQq1cvmJqaKsorVaqE9u3b48yZM3j69KkGI/z81K9fH+bm5irl3t7eAIDbt28rynbu3AkAGDRokNK47du3h42NjWI4FY7vv/8etWvXRkBAgNrhudVHv379YGhoiB07dnzqED9bFy5cQFRUFIYOHYqKFSsiJycHqampasdlPXx6ycnJAKDS1FJXVxdly5aFrq4uDAwMALA+ClPVqlXzPK7Y88POnTthZGSEvn37KpXLf896IiYSJNqVK1cAAA0bNlQZJi+7du1akcZUUsXFxQEAypYtqyi7cuUKdHR00KBBA5XxGzZsiEePHiExMbGIIvy8bdmyBefPn8f06dPVNsMQBAHXrl1DuXLlYGNjozTM0NAQ9vb23FcK4OjRowDeXkiNGTMGTk5OcHZ2hru7O5YuXYqcnBwArIei4uzsDGNjY6xYsQJ79+7FkydP8ODBAyxduhQnTpzAyJEjYWBgwPrQIDHnh5cvXyI2NhZ2dnYwNDRUGrdy5cqwtrbG1atXiyBq0mZMJEg0+cVrhQoVVIbJy549e1akMZVUCxYsAAB0795dUfbs2TNYWloq7vy9q3z58opxqGDi4uIwe/ZsDBo0CHZ2dmrHSUxMRFpamtp9BXhbHykpKUhJSfmUoX627t27BwCYOnUqnj17hunTp2PWrFmwsbHBggUL8PPPPwNgPRQVa2trLF26FObm5hg/fjzatGmDDh06YNmyZfjtt98wcuRIAKwPTRJzfpD/N7d6qlChguJ6gEoudrcn0dLS0gBA7YFIXpaenl6kMZVEy5Ytw/79++Hl5QVfX19FeXp6OkqXLq32N6VKlVKMQwXz888/w9LSEqNHj851HPl6VrevAP/VR1pamlIzQcobeTMmIyMjbNiwQbGeO3XqBG9vb2zduhWDBg1SvAGI9fDpmZqaokaNGnB1dUXz5s2Rnp6O0NBQ/PDDD5BIJOjevTv3Cw0Sc37ISz3Jrweo5OITCRJNflLOzMxUGSYve/8xKBWutWvXYt68eXB1dcWcOXMgkUgUwwwNDdXWDQBkZGQoxqH827NnDw4dOoRffvnlg+tSPuxj9cFXXeaPfP126dJF6WLHwMAAXbp0gSAIOHPmDOuhiNy6dQv9+vVD7dq18euvv6JDhw7o1q0bAgMDUb9+fUybNg3x8fGsDw0Sc37ISz2xjoiJBIn2oeYxH3sUSgUXGBiIGTNmwM3NDStWrFA5kFeoUAEJCQlqD/4fapZGeZOZmYnp06fD3d0dNjY2iI6OVvwD3t7Fi46OxsuXL2FhYQEjI6Ncm5LFxcXB1NSUd13zSb4dW1tbqwyTl71+/Zr1UETWrl2LzMxMdOjQQalcR0cH7du3R1paGq5evcr60CAx54ePNVV+9uyZ4nqASi4mEiSao6MjAODSpUsqwy5fvgzg7VuGqPCtWLECv//+O1q0aIHly5ervRvk6OgImUym6BT/rkuXLqFq1aqwsLAogmg/T+np6YiPj8eJEyfQrl07pX/A23Xcrl07/Pbbb5BIJHBwcMDz588RGxurMp2bN29yXykAeYdRdW+Jk1/8lClThvVQRJ4/fw7g7Qca35edna34L+tDc8ScH8qWLYtKlSrh1q1bKs1hY2Nj8eLFC8X1AJVcTCRINC8vL5iYmGDr1q1KneGePHmC8PBwuLq6omLFihqM8PO0bNkyzJ07F23atMHSpUsV7VnfJ/+S7+rVq5XK5V/9ffdLvySekZERFixYoPYfAEilUixYsAADBw4E8F99BAYGKk0nODgY6enprI8C8PT0hLm5OXbu3Kl0LEpNTUVoaCj09fXh7u4OgPVQFGrXrg0ACAkJUSrPyspCWFgYdHV1FQkC60MzxJ4funbtirS0NAQHByuVy+uN9UT8sjXly6ZNm/DTTz8pvmydmZmJoKAgJCQkIDg4ONe32FD+bNiwAdOmTUPZsmUxYcIE6OkpvyfBxMQEXl5eir+//vprhIWFoU2bNvD09ERMTAzWrFmDypUrY8uWLTAxMSnqRSgRbG1t1X7Zun///jh//jy6deuGRo0a4fbt29i4cSNcXFywZs0a6Orqai7oYm7Hjh347rvvUKNGDfTs2RMSiQTbt2/HvXv3MH78eIwYMQIA66EoPHnyBN27d0dCQgLatGmDFi1aIC0tDbt27cLt27cxaNAgTJo0CQDrozDt2LEDT548AQBs27YNT58+xZgxYxTD5W/LkhNzfkhJSUHPnj3x6NEjlS9b+/j4YPbs2UWzkKS1mEhQvoWHh+Pvv//GnTt3oK+vj0aNGmHcuHFMIj6BSZMmITQ0NNfhNjY2OHTokOLvrKwsrF69GiEhIYiNjYWFhQU8PDwwbtw4WFlZFUXIJZK6RAJ4e4d8yZIl2LdvH168eAFra2t06tQJo0aNgrGxsWaC/YwcPXoUK1euxPXr1yGTySCVSjFw4EDFBxvlWA+fXkxMDJYuXYpTp07hxYsX0NfXR506deDn56dI9ORYH4UjICAAZ8+ezXX4ux8sBcSfH+Lj4zF//nwcOnQIiYmJsLGxQY8ePTB48GCVm1pU8jCRICIiIiIi0dhHgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBREqOHTsGHx8f1K9fH7a2tkhKShI9DVtbW0ybNu0TRFe8nDlzBra2tjhz5kyhTtfW1haLFi0q1Gl+StwelMXExMDW1hYhISGaDqVE8/DwwKRJkzQdBlGxxkSCPpmQkBDY2toq/tWvXx/t27fHtGnT8PLlS02HV2D//vsvFi1ahJiYGE2HUmgSEhIwbtw4GBoa4scff8Ts2bNhZGSkdtyLFy9i0aJF+Uo0CouHh4fSNubm5oZ+/frhwIEDGoupsBw9erRYJQuaFBERAVtbW2zdujXXcU6ePAlbW1usW7cuz9PdsGGDRi/25Ymo/J+DgwOaNWuGgIAALFu2DPHx8RqLTRvt3r0ba9as0dj8T58+jcmTJ6N9+/ZwcnKCp6cnpk6diufPn6sd/+LFi+jbty+cnJzQvHlzTJ8+HampqUrjpKamYuHChRgyZAhcXV1zTUBlMhlCQkIwYsQItGrVCg0aNEDnzp2xdOlSZGRkfJLlJQIAPU0HQJ+/sWPHonLlysjMzMSFCxcQHByMo0ePIiwsLNeL1OLg33//xeLFi+Hq6orKlStrOpxCce3aNaSmpuKrr75Cs2bNPjjupUuXsHjxYvj6+sLc3LyIIlRlb2+PQYMGAQCeP3+OzZs3Y/To0fj555/Rt29fjcVVUEePHsWGDRswZswYlWFXr16Frq6uBqLSTq1bt4aZmRl2796NXr16qR0nLCwMurq68Pb2zvN0g4ODYWlpie7duxdWqPkSEBCA+vXrQyaTIT4+HpcuXcKiRYsQGBiI+fPnw83NTaPxaYuwsDDcvXsXAwcOzNP44eHhkEgkhTb/P/74A69fv0aHDh1QvXp1PH78GEFBQThy5Ah27NgBa2trxbg3b97EwIEDUatWLUyaNAnPnj3D6tWr8fDhQ6xatUoxXkJCApYsWYJKlSrB1tYWZ8+eVTvvtLQ0TJ48GQ0aNECfPn1QpkwZxXZy+vRprFu3rlCXlUiOiQR9ci1btkT9+vUBAL169YKFhQUCAwMRGRmJzp07F2jaaWlpxToZ0TbyO5xmZmYajiTvypcvDx8fH8Xf3bp1Q7t27bBmzZpinUh8SKlSpTQdglYxMDBA+/btERISgri4OJQvX15peEZGBg4cOIBmzZqhTJkyGooy/xo1aoQOHToold26dQuDBw/G2LFjsWfPHpQrV05D0X06n/r4bmBgUKjTmzx5MlxcXKCj819jjxYtWsDf3x9BQUEYP368ovzPP/+Eubk51q9fD1NTUwBA5cqV8f333+PEiRNwd3cHAJQrVw4nTpyAtbU1rl27hp49e6qdt76+PoKDg+Hs7Kwo8/Pzg42NjSKZ+NjNIaL8YNMmKnJNmzYFAKUmQTt37kT37t3h6OgIV1dXjB8/Hk+fPlX6XUBAADp37ox//vkHX3zxBZycnPDnn38CeHuhsGjRIrRv3x7169eHu7s7Ro8ejUePHil+L5PJsGbNGnh7e6N+/fpo1qwZfvzxR7x+/VppPh4eHhg+fDjOnz+Pnj17on79+vD09MSOHTsU44SEhOCrr74CAPTv31/R9EDeFv7gwYMYNmwY3N3d4eDgAC8vLyxZsgQ5OTkq62PDhg3w9PSEo6MjevbsifPnzyMgIAABAQFK42VmZmLhwoVo27YtHBwc0KpVK8yePRuZmZl5Wu/79u1TrOMmTZpg4sSJiIuLU1q/3333HQCgZ8+esLW1zbX98KJFizB79mwAgKenp2L532/mdfDgQXTu3BkODg7w9vbGsWPHVKYVFxeHyZMno1mzZorxtm3blqdlUsfa2ho1a9ZEbGysouzGjRsYOnQonJ2d0bBhQwwYMACXL19W+p28Kd65c+fw448/okmTJnB2dsa3336rso3k1kchL22uz58/j7Fjx6J169aKepwxYwbS09MV40yaNAkbNmxQzEv+70PzF7OMFy5cwMyZM9G0aVM0aNAAo0aN+mgzmcjISNja2uLWrVuKsv3798PW1hajR49WGrdjx44YN26cyjTysj3kZTnU6dq1K2QyGfbu3asy7MiRI0hOTkaXLl0AANnZ2ViyZAm8vLzg4OAADw8P/Pnnn0r7koeHB+7evYuzZ88q1v+7+2RSUhJ+++03tGrVCg4ODmjbti1WrFgBmUymNO+kpCRMmjQJLi4uaNSoEb777jskJyd/dHk+xs7ODlOmTEFSUpJiW5HLyz4lbza1d+9eLF68GC1atEDDhg0xduxYJCcnIzMzE7/99hvc3NzQsGFDTJ48WeVYk5f1KHf06FH4+/ujYcOGcHZ2Ro8ePbB7927F8A8d3/NyPA0ICMCRI0cQGxurqC8PD48PrsP399eC7B8A0LhxY6UkQl5mYWGB+/fvK8pSUlJw6tQpdO3aVZFEAICPjw+MjY2xb98+RZmBgYHSk4zcGBgYKCURcm3btgUA3Lt376PTIMoPPpGgIie/uLewsAAA/PXXX1iwYAE6duyInj17Ij4+HkFBQfjiiy+wY8cOpWYziYmJ+PLLL+Ht7Y2uXbuiTJkyyMnJwfDhw3H69Gl4e3ujf//+SE1NxcmTJ3Hnzh1UrVoVAPDjjz8iNDQU3bt3R0BAAGJiYrBhwwbcuHEDwcHB0NfXV8wnOjoaX331FXr27AlfX19s374dkyZNQr169VCnTh00btwYAQEBWL9+PUaMGIGaNWsCAGrVqgUACA0NhbGxMQYNGgRjY2NERUVh4cKFSElJUVysA8DGjRsxbdo0NGrUCAMHDkRsbCxGjRoFc3NzVKhQQTGeTCbD//73P1y4cAF+fn6oVasW7ty5g7Vr1+Lhw4dYunTpB9d5SEgIJk+ejPr162PChAl49eoV1q1bh4sXLyrW8YgRI1CjRg1s3rxZ0RxNvu7e17ZtWzx8+BBhYWGYPHkyLC0tAQBWVlaKcS5cuICIiAj069cPJiYmWL9+PcaOHYvDhw8rxn/58iX8/PwgkUjwxRdfwMrKCseOHcPUqVORkpKS5yYK78rKysKzZ88U29fdu3fxxRdfwMTEBEOHDoWenh42b96MgIAABAUFwcnJSen306ZNg7m5OUaPHo0HDx4gODgYT548wfr16wulaUB4eDjS09PRt29fWFhY4OrVqwgKCsKzZ8+wcOFCAEDv3r3x/PlznDx5UpGwfYjYZZw+fbpiGWNjY7F27VpMmzYN8+fPz3UeLi4ukEgkOH/+POzs7AC8TYp0dHRw4cIFxXjx8fG4f/8+/P39lX6fl+1B7HK8q3HjxqhQoQJ2796taOomJ29G6eXlBQD4/vvvERoaivbt22PQoEG4evUqli9fjnv37mHJkiUAgClTpuDXX3+FsbExRowYAQAoW7YsgLd3yv39/REXF4c+ffqgYsWKuHTpEv7880+8ePECU6dOBQAIgoCRI0fiwoUL6NOnD2rVqoUDBw4oHQMKon379pg6dSpOnDihuNstdp9asWIFDA0NMWzYMERHRyMoKAh6enqQSCRISkrC6NGjceXKFYSEhMDGxkYpaczLegTeHn+mTJmCOnXqYPjw4TAzM8PNmzdx/PhxRXIHqD++A3k7no4YMQLJycl49uwZJk+eDAAwMTHJ13rNz/6Rm9TUVKSmpiq2cQC4ffs2srOz4eDgoDSugYEB7O3tcfPmzXzFrY68P+K78ycqVALRJ7J9+3ZBKpUKp06dEl69eiU8ffpU2LNnj+Dq6io4OjoKz549E2JiYgR7e3vhr7/+Uvrt7du3hbp16yqV+/v7C1KpVAgODlYad9u2bYJUKhUCAwNVYpDJZIIgCMK5c+cEqVQq7Nq1S2n4sWPHVMrbtGkjSKVS4dy5c4qyV69eCQ4ODsLvv/+uKNu3b58glUqFqKgolfmmpaWplP3www+Ck5OTkJGRIQiCIGRkZAiurq5Cjx49hKysLMV4ISEhglQqFfz9/RVlO3bsEOzs7JRiEgRBCA4OFqRSqXDhwgWV+cllZmYKbm5uQufOnYX09HRF+eHDhwWpVCosWLBAUSavs6tXr+Y6PblVq1YJUqlUePz4scowqVQq1KtXT4iOjlaU3bx5U5BKpcL69esVZVOmTBGaN28uxMfHK/1+/PjxgouLi9r1+K42bdoIgwcPFl69eiW8evVKuHnzpjB+/HhBKpUKv/76qyAIgjBy5EihXr16wqNHjxS/i4uLExo2bCh88cUXKsvu6+srZGZmKspXrlwpSKVS4eDBg0rLt3DhQrXxfPfdd4q/o6KiVLYRdcu0fPlywdbWVoiNjVWU/fLLL4JUKlW73O/PX+wyDhw4ULFvCIIgzJgxQ7C3txeSkpLUzk/O29tb+OqrrxR/+/r6CmPHjhWkUqnw77//CoIgCBEREYJUKhVu3rypFG9etoe8LkduZs2aJUilUuH+/fuKsuTkZKF+/frChAkTlOY7depUpd/+/vvvglQqFU6fPq20vO/uh3JLliwRGjRoIDx48ECpfM6cOYK9vb3w5MkTQRAE4cCBA4JUKhVWrlypGCc7O1vo16+fIJVKhe3bt39weeTbz759+3Idp2vXrkLjxo0Vf+d1n5JPu3Pnzkrb+4QJEwRbW1th6NChSr/v3bu30KZNG8XfeV2PSUlJQsOGDYVevXopHX8EQVDaBnM7vgtC3o6ngiAIw4YNU4rxY97fXwu6f6izZMkSxXlQTn7ueP94LgiCMHbsWKF58+Zqp3X16tU8bTfvGjhwoODs7Cy8fv1adOxEecGmTfTJDRw4EG5ubmjVqhXGjx8PExMTLF68GOXLl8eBAwcgk8nQsWNHxMfHK/6VLVsW1apVU3ltpoGBgUrHx4iICFhaWqrcAQWguIMcHh4OMzMzNG/eXGk+9erVg7Gxscp8ateujUaNGin+trKyQo0aNfD48eM8LbOhoaHi/1NSUhAfH49GjRohLS1N8Yj7n3/+QWJiIvz8/KCn99/DwS5duqB06dJK0wsPD0etWrVQs2ZNpfjlzcQ+9HrRf/75B69evULfvn2V2ta3bt0aNWvWxJEjR/K0TGI1a9ZM6YmGnZ0dTE1NFetQEARERETAw8MDgiAoLZe7uzuSk5Nx/fr1j87nxIkTcHNzg5ubG3x8fBAeHg4fHx9MnDgROTk5OHnyJLy8vFClShXFb8qVK4fOnTvjwoULSElJUZpe7969lZ5O9e3bF3p6ejh69GhBVwkA5W3jzZs3iI+PR8OGDSEIAm7cuCF6evlZRvkda7lGjRohJydHqTmYOi4uLjh//jyAt9v1rVu30Lt3b1haWiqeSpw/fx7m5uaQSqVKv/3Y9pCf5Xhf165dAbx9AiG3f/9+ZGRkKO58y+vx/acWgwcPVhr+IeHh4XBxcYG5ubnSdtusWTPk5OTg3LlzAN6+SllPT0+pr46urq7aY1V+GRsbK970k599ysfHR2l7d3R0hCAI6NGjh9J4jo6OePr0KbKzswHkfT2ePHkSqampGDZsmErfnvef8Kk7vgN5O54WpvzuH+87d+4clixZgo4dOyp1iJc3Y1TXR6NUqVJKzRwLYtmyZTh16hS+/vprjb4Qgz5vbNpEn9yPP/6IGjVqQFdXF2XLlkWNGjUU7UgfPnwIQRDQrl07tb999wIbeNux9v2D76NHj1CjRg2Vcd8VHR2N5OTkXN9u8urVK6W/K1asqDJO6dKlVdrK5+bu3buYP38+oqKiVC5+5O2jnzx5AgAqzYf09PRgY2OjEv+9e/fyHP+75POpUaOGyrCaNWsqNUspTLmtQ/nrYuPj45GUlITNmzdj8+bNaqeRl3bJTk5OGDduHCQSCQwNDVGrVi3FSfPFixdIS0tTu+y1atWCTCbD06dPUadOHUV5tWrVlMYzMTGBtbW16IuI3Dx58gQLFy7EoUOHVLanj10oqxMfHy96GStVqqQ0nnx9fexVvo0aNcKmTZsQHR2NR48eQSKRoEGDBmjUqBHOnz8PPz8/nD9/Hs7OziptxfOyPYhdjvfZ2dlBKpUiLCxM8barsLAwWFpaKjqvxsbGQkdHR2W/s7a2hrm5eZ7qOTo6Grdv3851f5Rvt7GxsbC2tlZpYqNuGfPrzZs3iunnZ596f1uQv2jh/foyMzODTCZDcnIyLC0t87we5U1ZP1RvcuqO70DejqeFKb/7x7vu3buH0aNHo06dOpg+fbrSMHlipK4vSUZGhlLilF979+7F/Pnz0bNnT/Tr16/A0yPKDRMJ+uQcHR0Vb216n0wmg0QiwcqVK9W+ztLY2Fjp7/weYGUyGcqUKYM5c+aoHf5u234ABXq1ZlJSEvz9/WFqaoqxY8eiatWqKFWqFK5fv445c+aodMbMC5lMBqlUqmj7+753+1Noi9zWoSAIAKBYD127doWvr6/acd/tYJwbS0tLrXkbibrO9O8PHzRoEF6/fo2hQ4eiZs2aMDY2RlxcHCZNmpSvbSM/3r/Il5PXTW5cXFwAvL3T+vjxY9StWxfGxsZo1KgR1q1bh9TUVNy8eVNtR+uPbQ+FpUuXLpg7dy6uXbuGChUq4MyZM+jdu7fKjYaC9HeRyWRo3rw5hg4dqnZ49erV8z1tMbKysvDw4UPFRXp+9qnctoW8biOF+UpRdcf3T3E8/Zj87h9yT58+xZAhQ2BqaooVK1YodagGoOg8re77Ei9evCjwG7hOnjyJb7/9Fq1bt8Yvv/xSoGkRfQwTCdKoqlWrQhAEVK5cOd936apWrYorV64gKytL6RH9++OcPn0azs7OhXK3B8j9BHr27FkkJiZi8eLFaNy4saL8/Tcaye96PXr0SNFECXj7JhT5m0fejf/WrVtwc3MTfeKWz+fBgwcqd1AfPHigcvctrwp6AWFlZQUTExPIZLJPlghYWVnByMgIDx48UBl2//596OjoqNx5jY6OVqqP1NRUvHjxAi1btlSUvXsnXS4zMxMvXrz4YDx37tzBw4cPMWvWLHTr1k1RfvLkSZVx87p+87OM+VWpUiVUqlQJFy5cwOPHjxXN/xo1aoSZM2ciPDwcOTk5Stt9XhXWcnTu3Bl//vknwsLCUKlSJeTk5Ch16LWxsYFMJkN0dLTi5QjA206pSUlJSk8Dc6uDqlWr4s2bNx/dbm1sbBAVFYXU1FSlpxLqljE/9u/fj/T0dMXTlqLYp+Tyuh7lTyzu3r2r8rQvL/J6PAUKN6nJr4SEBAwePBiZmZnYuHGj2qRAKpVCT08P//zzDzp16qQoz8zMxM2bN9GxY8d8z//KlSsYPXo0HBwcMH/+/A8+qScqDOwjQRrVrl076OrqYvHixSp3ewRBQEJCQp6mkZCQoPIKRPk0gLevo8zJyVH7dqPs7Ox8fZ1Z/n7z9x+ty+9mvbs88pPKuxwcHGBhYYEtW7Yo2h0Db7/O+n6Tl44dOyIuLg5btmxRiSM9PR1v3rzJNU4HBweUKVMGmzZtUnqUfvToUdy7dw+tW7f+yJKql9vy55Wuri7at2+P/fv3486dOyrDC+Orvbq6umjevDkiIyOVLjxevnyJsLAwuLi4qNwt3Lx5M7KyshR/BwcHIzs7WymRqFKliqKvgNyWLVs++kRC3bYhCILary3L1+/Hts38LGNBuLi4ICoqClevXlU8obC3t4eJiYniDUD16tUTPd3CWo5KlSqhUaNG2Lt3L3bt2oXKlSsrvRazVatWAIC1a9cq/S4wMFBpOPC2DtSt/44dO+LSpUs4fvy4yrCkpCTF/tyyZUtkZ2cjODhYMTwnJwdBQUEfXY6PuXXrFmbMmIHSpUvjiy++AFA0+5RcXteju7s7TExMsHz5cpUvLOflDn9ej6fA2/r6FE2d8urNmzcYNmwY4uLisGLFilyfTJmZmcHNzQ27du1Saqq1c+dOvHnzRuWbIXl17949DBs2DDY2Nli+fHmh3TQj+hCmqqRRVatWxbhx4zB37lzExsbCy8sLJiYmiImJwcGDB+Hn54chQ4Z8cBrdunXDjh07MHPmTMXFTVpaGk6fPo2+ffvCy8sLrq6u6N27N5YvX46bN2+iefPm0NfXx8OHDxEeHo6pU6eKPnjb29tDV1cXK1euRHJyMgwMDNC0aVM0bNgQpUuXxqRJkxAQEACJRIKdO3eqnDQNDAwwZswY/PrrrxgwYAA6duyI2NhYhISEqLQ79vHxwb59+/DTTz/hzJkzcHZ2Rk5ODu7fv4/w8HCsWrUq1+Zj+vr6mDhxIiZPngx/f394e3srXv9qY2OTr1esAlBcLM6bNw+dOnWCvr4+2rRpo9Ic7UO+/vprnDlzBn5+fujVqxdq166N169f4/r16zh9+nSuX3EVY9y4cTh16hT69euHfv36QVdXF5s3b0ZmZia++eYblfGzsrIwcOBAdOzYEQ8ePMDGjRvh4uICT09PxTi9evXCTz/9hDFjxqBZs2a4desWTpw48dFXLNasWRNVq1bFrFmzEBcXB1NTU+zfv1/txap8/U6fPh3u7u4f/Cqz2GUsiEaNGmH37t2QSCSKREJXVxcNGzbEiRMn4Orqmu8PfRXWcnTt2hU//PADnj9/rnh1q5ydnR18fX2xefNmJCUloXHjxrh27RpCQ0Ph5eWl9DSqXr16CA4OxtKlS1GtWjVYWVnBzc0NQ4YMwaFDhzBixAj4+vqiXr16SEtLw507d7B//35ERkbCysoKHh4ecHZ2VhzfateujYiICNEXu+fPn0dGRgZkMhkSExNx8eJFHDp0CKampli8eLHSdwaKYp8Ssx5NTU0xefJkfP/99+jZsyc6d+4Mc3Nz3Lp1C+np6Zg1a9YH55PX4ynwtr727t2LmTNnon79+jA2Nv7otyQK08SJE3H16lX06NED9+7dU/p2g4mJieL1wwAwfvx49OnTBwEBAfDz88OzZ88QGBgId3d3pZsWABAUFISkpCRFU6jDhw/j2bNnAN5+P8PMzAwpKSkYMmQIkpKSMGTIEJWXaFStWhUNGzb8REtOJRkTCdK4YcOGoXr16lizZo3i3eMVKlRA8+bN83QSkF/M//XXXwgLC0NERAQsLCzg7Oys1Dxo2rRpcHBwwKZNmzBv3jzo6urCxsYGXbt2Vfshn4+xtrbGL7/8guXLl2Pq1KnIycnBunXr0KRJEyxbtgyzZs3C/PnzYW5ujq5duyouQN7l7+8PQRAQGBiIWbNmwc7ODn/99RemT5+u9IYTHR0dLFmyBGvWrMHOnTtx4MABGBkZoXLlyggICPhos7Du3bvD0NAQK1euxJw5c2BsbAwvLy988803+X6bh6OjI7766its2rQJx48fh0wmQ2RkpKhEomzZsti6dSuWLFmCAwcOIDg4GBYWFqhduzYmTpyYr7jeV6dOHWzYsAFz587F8uXLIQgCHB0d8ccff6j9LsGPP/6I3bt3Y+HChcjKyoK3tze+//57pWYTfn5+iImJwbZt23D8+HG4uLggMDDwo0mZvr4+li1bhunTp2P58uUoVaoU2rZtiy+++ELp69zA2ydtAQEB2LNnD3bt2gVBEHJNJMQuY0HImzPVrFlTKXFq1KgRTpw4ofS2M7EKaznat2+PX3/9FZmZmYo3Ob1r+vTpqFy5MkJDQ3Hw4EGULVsWw4cPV/mw3qhRo/DkyROsWrUKqampcHV1hZubG4yMjLB+/XosX74c4eHh2LFjB0xNTVG9enWMGTNG0WFZR0cHf/31F2bMmIFdu3ZBIpEoPoL2btO2j1m/fj2At9uPmZkZatWqhTFjxsDPz0+lf1dR7FNyeV2PvXr1QpkyZbBixQosXboUenp6qFmzZp5uYlhaWub5eNqvXz/cvHkTISEhWLNmDWxsbIo0kZB/rHH79u3Yvn270jAbGxulRKJevXoIDAzEnDlzMHPmTJiYmKBnz56YMGGCynRXr16t9BKAiIgIREREAHibNJuZmSExMVHxEde5c+eqTMPX15eJBH0SEqGwe7oRUYHIZDK4ubmhbdu2Km/7oE9H/tG+bdu25fp0h4iIiP7DPhJEGpSRkaHyiH7Hjh1ITEyEq6urhqIiIiIi+jg2bSLSoMuXL2PmzJno0KEDLCwscOPGDWzbtg1SqTTfHe6IiIiIigITCSINsrGxQYUKFbB+/Xq8fv0apUuXVnyVOb8dVomIiIiKAvtIEBERERGRaOwjQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhE+z9dIRp6TtOihQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHTCAYAAACz7y7zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4W0lEQVR4nO3dd1QU19sH8O8uRbqAYsNeFlAEBcSGDeygiAUbWKJRf7ZoNIkl1RiNxpLYYovYsYIFFXtXLFhjjx1UNAJSRNrO+4fvblx3QQZWdpHv5xzPkTuzM8/cnbk7z8y9MxJBEAQQERERERGJINV1AEREREREVPQwkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICKdCQsLg4ODA8LCwnQWg7e3N7y9vXW2ftIfEyZMgIODA2JiYvL8GX3df7R1bM2fPx8ODg44c+aMliJT5+DggODg4I+2fLHOnDkDBwcHzJ8/X9ehKOlDWymGPtbhp0DfjhUAMCzIh//880/8/vvvAIA9e/agevXq2oip2HNwcFD528jICBYWFihfvjxq166Ntm3bwsvLCwYGBjqK8NMRHByMs2fP4tatW3maPywsDBMnThS1jrwuuyibMGECwsPDcfDgQVSsWFHX4agQ+x0XpgcPHmDfvn04ceIEHj58iJcvX8LKygqurq7o378/GjVqlONnw8PDsW7dOty9exdSqRS1a9fGZ599hlatWqnNe/fuXezatQs3btzAjRs38PTpUwDAtWvXYGio/jPw+vVrHDhwAEePHsW1a9fw7NkzSCQSVKtWDX5+fggKCoKxsXGet1PxHbzLzMwM1apVQ9u2bTFgwACYmJjkeXn09kStX79+GDlyJEaNGqXrcJTmz5+PBQsW5DqPp6cn1qxZU0gRqYuJiYGPjw8CAgLw66+/6iyOokKxr+X0vR05cgRjxoyBXC7HnDlz0Lp1ax1EqVve3t6IjY3Vy9/Ajy3fiYQgCNi8eTMkEony/9988402Yyv2Ro4cCQDIzs5GcnIy7ty5g+3bt2PLli1wdnbGrFmzUK1aNR1HWbw4OTkpvxeF2NhYhIeHw97eHgEBATqKrGhq06YNXF1dUaZMGV2HohN//PEHdu/ejZo1a6JFixYoWbIk7t+/j0OHDuHQoUOYPHky+vXrp/a5GTNmYMWKFShXrhx69OiBzMxM7N69G8OGDcN3332HoKAglfmPHz+OhQsXwsDAAFWqVEGJEiWQnp6eY1znz5/HV199BWtrazRs2BCtW7dGUlISDh06hBkzZmDfvn1YtWoVSpQoIWp7AwICYG9vD0EQ8OzZM+zfvx9z587FwYMHsX79ehgZGYlanrZ9+eWX+Pzzz1G2bFmdxqENuj62PD094enpqXGavb19IUcjjouLC3bv3g0bGxtdh6L3tm7diu+//x7m5ub4888/4e7uDoB1WJzkO5E4ceIEYmNj0bVrVxw/fhzh4eEYO3asqKtUlDtNV5n+/fdf/Pzzz4iMjMTAgQOxdetWlCpVSgfRFU9OTk5wcnJSKTtz5owykdCnK4NFgaWlJSwtLXUdhs40a9YMn3/+OWrXrq1SfvbsWXz22WeYOXMm2rdvr3IyeOHCBaxYsQKVK1fGli1bULJkSQDAoEGD0K1bN8yYMQMtW7ZUuSrWvHlz1K9fHw4ODjAxMVFePcuJnZ0dfvvtN7Rv316lTf/666/Rr18/XLx4EevWrcNnn30mansDAgLQsGFD5d9jxoxBQEAArly5goiICJ0n4mXKlPlkklpdH1uenp5Ftj00NTVFjRo1dB2G3luyZAnmzJmDcuXKYfny5ahVq5ZyGuuw+Mj3GInNmzcDAHr06IFOnTohISEBBw4cUJln0KBBcHBwwM2bNzUuY/fu3XBwcMCMGTNUyhMTEzF79mx06NABLi4ucHd3R//+/XHixAm1Zbzbb/DYsWMIDg6Gu7u7SvegAwcOYPz48WjXrh3q1auHevXqoWvXrli9ejXkcrnG2O7fv49Ro0ahQYMGqFevHnr16oUjR47k2k/x2bNnmDJlCnx8fODs7IyGDRti2LBhuHLlSu6VKULp0qUxd+5ceHp64unTp1i8eLHaPPmtv5MnT6JPnz6oX78+GjVqhIkTJyIpKQkAcP36dQwdOhQNGjRA/fr1MWzYsBz7ET948ABff/01mjVrBmdnZ3h5eeHrr7/GgwcPNM6fnZ2N0NBQ9OrVC+7u7nBxcUGbNm0wefJklc+821d3586d6NGjB+rXr6/SPzksLAyjRo2Cj48PXFxc4Obmhl69emH79u0q64yJiYGDg4Oyu4WDg4Pyn7b6H36oj6imvtUf2p/fnR4VFYXg4GDUr18fbm5uGDJkCO7evatxXc+fP8dPP/0Eb29vODs7o1GjRhg5ciT+/vtvtXlz6xOtqLcJEyYoyxwcHBAeHg4A8PHxUdZjXvqN53Q8Kerm9evXyhNjZ2dntGnTBkuXLoUgCB9cttjvWOy6Ll++jNGjR6Np06ZwdnZGixYt8P333yMuLu6DsSl07dpVLYkA/ruam5mZiYsXL6pM27BhAwBg2LBhyiQCACpWrIg+ffogIyNDrT6rV68OV1fXPHcfcnJyQufOndUuDFlYWGDgwIEAoNZVKT/KlCmDNm3aAICynXz3uLly5QqGDBkCT09PtbELERERCA4OhoeHB+rWrYsOHTpg0aJFyMjIUFvP+fPnMWzYMDRv3hzOzs5o2rQpAgMD1brg5DRGQhAErF27Fr6+vqhbty6aNWuGKVOmIDk5OdftExOjYr+Mj4/Hd999By8vLzg7O8PX1xdbt25Vi1Nxp2rBggUq+7biuM3p2IqKisJ3332Hjh07ws3NDS4uLvDz88OCBQtyvUulC1lZWVi3bh0CAwPh5uYGV1dXdOnSBWvXrs3xt/vKlSsYM2aMyu/PZ599ht27dwN42775+PgAeNs98N26U9RVbm23mN+3d9vSyMhIdO/eHa6urvD09MTYsWNFtRXvOnLkCHr16oV69eqhQYMGGD16tNr6v/zyS5X273179+6Fg4MDpkyZInr9giBg6tSpmDNnDmrWrIkNGzaoJBFAznUYHBwMBwcHZGVlYfHixWjbtq2y/fztt98KdPwCQFpaGpYsWQJ/f3/Uq1cP9evXR8+ePREREaEy3/Hjx+Hg4JBjV+WMjAw0bNgQDRs21BhTXok5rt9d98KFC9G6dWs4OzvD29sbc+fOzTWOvB4rjx8/hoeHBzw9PdUuJr1+/RodOnSAk5OTqDFR+boj8e+//+LQoUOoWrUq3NzcYGFhgRUrVmDjxo3o2LGjcr6AgACcOHEC27ZtUznxUFCcfLx7FSo2NhbBwcGIjY2Fh4cHmjVrhrS0NBw+fBiDBw/GlClTEBgYqLasvXv34vjx42jevDl69eqFJ0+eKKfNmjULUqkULi4uKFu2LJKTkxEVFYVffvkFV69exW+//aayrLt376J379549eoVWrZsCQcHBzx+/BgjR45E8+bNNdbJtWvX8Nlnn+HVq1fw8vJC27ZtlclVnz59sHDhQrRo0UJcRedAKpVi+PDhOHv2LHbt2oVJkyZBIpEUqP4OHTqEI0eOoGXLlujVqxcuXryIsLAwxMTEYNy4cRgwYADc3d3RvXt33L59G4cPH0ZMTAx27NgBqfS/fPTKlSsYOHAgUlNT4e3tjZo1a+LevXvYsWMHDh48iJCQELi4uCjnz8jIwLBhw3Dy5EmUL18efn5+sLCwQGxsLA4cOAB3d3dUrVpVJdaQkBCcPHkSrVq1QsOGDVV+zH/88UfUrFkTDRo0gJ2dHRITE3H06FF8/fXXuH//PsaMGQMAsLKywsiRIxEeHo7Y2FiV7kr6cNs9t/0ZePtDcvDgQTRr1gy9evXC3bt3cfToUVy9ehW7du2Cra2tct7Hjx+jT58+eP78ORo1agRfX188ffoUkZGROHLkCObPn6+xX31ejRw5EgcOHMDNmzfRr18/WFlZAUCBr4ZmZmZi0KBBeP78OZo3bw4DAwMcOHAAs2fPRkZGhloXs/eJ+Y7FrmvLli34/vvvYWxsDG9vb5QrVw4PHz7E5s2bcejQIWzatAkVKlQo0PYrxi68PxYqKioKwNu7Ge9r3rw5Fi1ahKioKIwePbpA6xcbV34pEjVFG6Zw6dIlLFmyBO7u7ujWrRsSEhKUXZ8mTpyIsLAwlCtXDm3btoWVlRUuXbqEP/74A6dPn0ZISIgyzmPHjmHo0KGwsLCAt7c3ypYti8TERNy7dw/r16//4H4EAL/88gvWrFkDOzs79OzZE4aGhjh48CAuX76MjIwMjXfixcSokJSUhN69e8PY2Bjt2rVDRkYGIiMjMWnSJEilUuVvpaIPenh4uFoXog+1X8uWLcP9+/dRv359tGjRAhkZGbhw4QLmz5+PM2fOYOXKlXox/i4zMxPDhg3DiRMnlGNzSpQogTNnzuDnn3/G5cuX1X67N23ahB9//BFSqRTe3t6oWrUqXr58ib///huhoaHo2LEjPD090a9fP6xevRqOjo4q/fnfv9v8PrG/bwrr16/HoUOH4O3tjQYNGuDKlSvYvXs3bt68ie3bt4vqybFv3z4cP34crVu3hqenJ27cuIG9e/fizJkzCA0NVY5V7d27N3bt2oWNGzdq7GK2ceNGAECvXr3yvG7g7W/2N998g927d6N+/fpYvHgxrK2tRS0DAMaNG4fo6Gg0a9YMLVq0wLFjx7B8+XLEx8dj+vTpyvnEHL9JSUno378/rl+/jjp16qBbt26Qy+U4ceIExo0bhzt37mDs2LEAAC8vL1SuXBl79uzBpEmT1H6v9u7di8TERHz22WcF7mmT1+MaeNsejhkzBgcPHkTlypURFBSEzMxMbN26Fbdv39a4fDHHSqVKlTB16lR88cUXGDduHNauXatsh3766Sfcu3cPo0aNUrlz/EFCPixZskSQyWTC4sWLlWUBAQGCg4OD8ODBA2XZmzdvBHd3d6FJkyZCZmamyjKeP38uODk5CQEBASrlQUFBgoODgxAREaFS/urVK6Fz585C3bp1hRcvXijLt27dKshkMsHBwUE4evSoxngfPnyoVpadnS18/fXXgkwmEy5duqQyrV+/foJMJhPWrVunUn7kyBFBJpMJMplM2Lp1q7I8MzNTaN26teDs7CycOXNG5TPPnj0TvLy8hKZNmwrp6eka43ufYh25SU9PF2rXri3IZDLh0aNHyvL81p+Tk5NK7NnZ2cKAAQMEmUwmNGjQQNi+fbvK8iZOnCjIZDJh//79yjK5XC60b99ekMlkavPv2rVLkMlkQrt27YTs7Gxl+ezZswWZTCYMHTpUrX7S09OFly9fKv+eN2+eIJPJBFdXV+HatWsa60XTd52eni7069dPqF27tvDs2TOVaUFBQR+s6w+JiooSZDKZEBQUpLF83rx5Gj/XqlUroVWrViplH9qf3/2+Tp06pTJt1qxZgkwmE5YuXapS/tlnnwkymUxYtGiRSnl0dLTg5OQkeHp6CikpKcpyRT1HRUWprf/x48eCTCYTvvnmG5Xyb775RpDJZMLjx481bmtOFNvz7vEkCG/rRiaTCYMHDxbS0tKU5f/++6/g7u4uuLu7CxkZGXlax4e+Y7HrunfvnlCnTh2hdevWavvTqVOnBEdHR2H48OF5ii0nMTExgrOzs+Dq6iokJiYqy1NTUwWZTCbUq1dP4+devnwpyGQyoXHjxrkuX7HN77fLeTFo0CBBJpMJoaGhef6M4jt4f5+Ki4sTGjduLMhkMiE8PFwQhP+Om5zWodhnRowYofJ9CcJ/++7KlSuVZSNHjhRkMplw48YNtWW9274Igub9ODo6WpDJZELr1q2FhIQEZfmbN2+EwMBAQSaT5Xgc5zVGQfiv3Z80aZKQlZWlLL9z547g5OQkdOjQQWX+D7UvOR1bjx49EuRyudr8c+fOFWQymbBr1y6N8WpqDzRRzB8UFCTMmzdP47+LFy+qbfv77adiOVOmTFGpj6ysLI2/P3fu3BFq164tNGjQQLh9+7ZaXE+fPlX+P6d2TEFT3ebn902xDfXr1xdu3ryp8pkvv/xSY33nRPF9ymQy4dChQyrTVq5cKchkMqFfv34q5b6+voKzs7MQHx+vUv7o0SPBwcFB6NmzZ57WraiPgIAA5XnB0KFD1fZtTZ95f/9UtAUBAQEqx1NqaqrQunVrwdHRUXj+/LmyPD/H7/u/gW/evBE+++wzwcHBQbh+/bqyfPny5YJMJhPWrFmjtmxFnPfu3ctxG9+laFPf/w0Ue1zv2LFDkMlkQmBgoPDmzRtleUJCguDj46OVY0UQBOGHH34QZDKZMGvWLEEQBCEsLEyQyWRCcHCwyj6cF6K7Ngn/P7BaKpWiS5cuyvKuXbtCEARs2rRJWVaiRAl06NAB//77r1q3mh07diA7O1tlGTdv3sTZs2fRtm1b+Pr6qsxvZWWFUaNGIT09HXv37lWLy8fHJ8e7BZUrV1Yrk0qlylvDx48fV5Y/ffoUUVFRqFKlilqm3qJFCzRp0kRtWUeOHMGjR48QFBSklvmXLVsWgwcPxosXL3D69GmN8eWHsbGx8ipAQkICgILVn6+vr0rsUqkU/v7+AIBatWqhc+fOKvMrvrd3u61duHAB9+7dQ/369dXm79ixI9zd3XH//n1ER0cDeNulaf369TAxMcFPP/2klvUbGxurXFlXCAwM1NgdBND8XRsbG6Nv377IysrS6nfwMeW2PwNv67Nx48YqZYo7TVevXlWWPXv2DCdOnECFChUwePBglfnd3Nzg6+uLxMRE7N+/X4vRa8+3336r0h2nVKlS8PHxQXJyMu7fv6+TdYWGhiIzMxOTJ09WG5TbuHFjeHt74/Dhw0hJSclXHBkZGRg/frzyTsi73ZcUd99yutujKFd0SdS2tWvX4vjx43ByckK3bt1Efz48PBzz58/HvHnzMGnSJPj6+uLly5dwcXFRa7OcnJw0Xi1dvXo1DA0NMW3aNLWuWsOHD4e1tTV27typ9jlNA8M1tS/vU3R3GTZsmMqV1xIlSuDLL7/U+Jn8xmhqaoqJEyeq3BGoWbMm3NzccPfuXaSmpn4w3g+pVKmS2t0fABgwYAAA1d/Dgjh79iwWLFig8d+lS5dy/axcLsfatWthZ2enVh8GBgaYMGECJBKJSh2GhoYiKysLw4cPV+tmAwDlypUr0PaI/X17l6I7z7t69OgBQLW9zotGjRqp3UEOCgpC5cqVERUVpdJdpXfv3sjIyFD2/lDYtGkTBEEQfTfi2rVrOHXqFKpVq4YFCxYU6Elr48ePVzmezMzM0KlTJ8jlco1dbj90/CYkJGDHjh1wdnbG559/rvbZr776CoIgqOwzXbt2RYkSJZR3ZxTu3buHs2fPomHDhlp5oI2Y41rR3owdO1Zlm62trTF8+HC1ZefnWAHe3jF1dHTEsmXLsHbtWkyZMgW2trbKHjxiiO7aFBUVhUePHsHLy0vlR9TPzw+//vorwsPDMWbMGOUt6ICAAGzatAnh4eFo2bKlcv5t27bByMgIfn5+yjJFX+CUlBSNfRPj4+MBvP2S36fpdqJCQkIC/vrrLxw9ehQxMTF4/fq1yvTnz58r/3/jxg0AQL169TRWpru7O06dOqVSpmgUnzx5kmOfSuBtlyltdW8CoNZ3uyD15+zsrFamGHRYp04dtWmK7/7Zs2fKsuvXrwNAjrfEGjVqhOjoaFy/fh0NGjTAvXv3kJycDFdXV1FPScntu37y5AmWLVuG06dP4+nTp3jz5o3K9Pz2SS1suW0joPn7Kl++PADg1atXyjLFd+Lu7q7xiTiNGjXCjh07cP36dZWkXh9YWlqiSpUqauWKEwJtniyLWZfieD979qzGk4CXL18iOzsbDx480Pg95SY7OxtfffUVLly4gI4dO2LQoEGiPv8x7du3D9OmTYOdnR3mz5+frycsvXtCY2ZmhipVqmDgwIEYOHCg2vI0HQNpaWm4efMmbGxssGrVKo3rMDY2Vhkr1KlTJ+zbtw+BgYHo0KEDGjVqBDc3tzyfWCqOIU3dQ9zd3dW6AeUnRoUqVarAwsJCrfzd/dDc3DxPcefk9evXWL16Nfbv348HDx4gNTVV5bfk3d/DgijIY2nv37+PxMREVK1aFX/++afGeUxMTFR+yxTHpaYuf9og9vftXXXr1lWbX1N7nRfvLxt4e8Lo7u6OR48e4caNG8rubf7+/pg1axY2btyofDBCZmYmwsPDUbJkSXTo0EHUuqtVq4aMjAzcv38fU6dOxQ8//KAxKc2LvP6G5fX4vXr1KrKzsyGRSDSe/2RlZQFQPf+xsbFBhw4dsG3bNly4cAFubm4AoLwgLjbRyomY4/r69euQSqXKp1+9S1MblJ9jBXibXM2dOxfdunXDzz//DIlEgj/++CNfD5sQnUgoMreuXbuqlFtbW8Pb2xt79+7FwYMH0b59ewBvr3pWrVoVhw4dwqtXr1CyZElcu3YNt2/fRuvWrVUyysTERADAyZMncfLkyRxjeD8RAN4OQtYkKSkJ3bt3R0xMDFxcXODv74+SJUvC0NAQSUlJWL16tcoAFsUVv5yehKSpXBF3ZGRkjjHnFHd+paenKw82RR0WpP40XeFU/EDmNk1xcAL/1V1OO6KdnZ3KfIqTM7GPWszpu378+DG6d++OpKQkeHh4wMvLCxYWFjAwMFA+orUgg6YKU07bqKAYh/AuRT/HdwdWKepaUffve/870SeathH4bzuzs7N1si7FcfbXX3/lukyxx7siiYiMjESHDh3w22+/qf1IK47FnL4vRXlO25NfBw4cwJdffglbW1usXr0alSpVytdyVq9enee+t5qOgaSkJAiCgPj4+A++q0Chbdu2WLJkCVasWIGwsDDlb1idOnUwbtw4NG3aNNfP5/abYGhoqPZ4y/zEqPCx9/nMzEz0798fV65cgUwmQ8eOHWFra6tc/oIFC/SijVQcYw8ePMi1Dt+9kqv4nj7Wo3vF/r69K7ff0JwGjeckp98GRfm767ewsEDnzp2xYcMGREVFoVGjRjh06BBevHiB/v37i358s52dHWbOnIkBAwYgNDQU6enp+OWXX0RfwQY07+ua6iSvx69in7l69Wqud3nev6vXp08fbNu2DRs3boSbm5vyDk6pUqWUD4IoKDHHdXJyMkqWLKnxQo2m3/H8HCsK1apVg4ODAy5evIiaNWvCy8sr1+3IiahEIj4+Xvlkpi+//DLH27qbNm1SJhLA224wv//+O3bv3o3evXtrHGQN/Hew5fTs9NzklBVv3rwZMTExGq+OXLx4EatXr1YpU2SNL1++1Lg8TeWKuBctWqR8GsTHFh0djaysLJQuXVr5mMeC1J82KNb/4sULjdMV5Yo6VhxcYu8S5PRdh4SEIDExEdOnT1dLdCMiItRu735sisb13WTrXUlJSTk2MPm9yvM+xXfy77//apz+/nfy7ro1nbToY8JR2BR1FR0drfEqU35kZmZi/PjxiIyMhJ+fH2bOnKlxwKuZmRnKli2LuLg4PH/+XO2k5uHDhwCg9oCCgtizZw/Gjx+P0qVLY9WqVVpddm40HQOK+q5du7ao47lly5Zo2bIlXr9+jcuXL+PIkSMIDQ3F0KFDsW3bNtSsWTPHzyqOoZcvX8LMzExlWlZWFhISElSujuY3xsJw8OBBXLlyBV27dlUZ0Aq8vRMhNvH5WBR13qZNmzzHpPhMXFyc1o5LTcvP6+/bx5JTW64ofz9p6d27NzZs2ICNGzeiUaNGyhPxnj175mv95cuXx9q1azFgwACEhYUhPT0dM2fO1PhiS23Jy/Gr2O4BAwaIemmsq6srateurRx0fezYMSQmJuLzzz/XyXttLC0t8erVK2RmZqqtX9O+l59jRWHp0qW4ePEibGxscOfOHSxZsgT/+9//RMcsKo0MDw9HZmYm6tSpg+7du2v8Z2tri1OnTuHx48fKz3Xp0gVSqRTbtm1DZmYmdu3aBRsbG7VuPq6urgDePupLWxQ/rG3btlWbdu7cObUyxVMbLl26pPFKgab+jx8j7tzI5XLlLax3u4YVdhzvU9RdTo+bUzxOTNFVqnr16rCyssKtW7e00uUot+86p5gUJ/vavLqtoEgS3u3+pfDw4cNCOSlXjCVRJJ7ve/87AaDsk694+/G7NPVdBf6rR7FX1wqDtr/jevXqAdDecZaRkYEvvvgCkZGR6NKlC3777bdcn5qjeNu1pr7sx44dU5mnoHbs2IFx48ahTJkyWLt2baElETkxNzdHrVq1cOfOHeWVODHMzMzQuHFjTJw4EUOHDkVmZqayznKiOIY0tSHR0dFq+1VBY8wrxT4iZr9+9OgRAGi80qrp91BXFL8Nly5dQmZmZp4+ozgu8zLGIz91J/b37WPR9D1lZ2crz03ef/KUo6Mj3NzcsH//fly+fBmnTp1CgwYNCvSOBzs7O6xZswZOTk7YtWsXvvjii0K5k5Xb8evi4gKpVJqvdrlPnz5IT0/Htm3bsGnTJkgkknwnWgVVu3ZtyOVyjeeamva9/BwrwNsxP/PmzUO1atUQERGBatWqYf78+fmqP1GJhKLf2I8//ohffvlF47+ePXtCEARs2bJF+bny5cujUaNGuHTpElavXo34+Hj4+fmpZVt169aFh4cH9u/fr/L5d926dSvHuwWaKK7Wv/8FXL9+HUuWLFGbv0KFCvD09MTDhw+Vz2tXOHbsmNr4CODtwNjKlStj/fr1OHr0qMY4Ll68iLS0tDzHnZOXL19i7NixOHv2LCpUqIChQ4cqp32M+hPD3d0d1apVQ3R0tFo3r8jISJw/fx5Vq1ZV9v0zMDBAnz598ObNG/zwww9qDVFGRoZyXEdeKPqFvv9dHz9+PMf6UAz2ev/xqtpQvXp1WFhY4ODBgyp1/ubNG0ydOlXr69OkXLlyaNq0KWJjY9X6a1++fBkREREoWbKkyiMQFX3Tw8LCVJKPp0+fYuHChRrX8zHrsaC0HVvfvn1hZGSE6dOnaxzwnZGRkefGWDGg+uDBg+jevTumT5/+wW4Cin67ixcvVulLHBMTg/Xr18PY2Fjtjlx+hIeH45tvvlFegcxvdyZtGzBgADIzMzFp0iSN42RevXqFa9euKf8+d+6cxiRacUx+aMCo4s754sWLVRKD9PR0zJkzRysx5odiv9aU8Ockpzby8ePHmDVrVoHi0SZDQ0MEBQXhxYsXmDp1qtpYN+DtHZR//vlH+Xfv3r1haGiIRYsWqZQrvHtBx8rKChKJRFTdif19+1iioqJw+PBhlbK1a9fi0aNHaNiwocbH//bu3RuZmZkYNWpUvgZZa2Jra4tVq1bBxcUFBw4cwIgRIz7Ke0jyevyWKlUKnTp1wt9//42FCxdqTBIfPXqkcpFbwc/PD5aWlli+fDnOnj2Lpk2b6qy9U7Tdv//+u0p9JiYmahwDkZ9j5dWrVxg3bhykUinmzp2L0qVL4/fff4eBgQHGjx8v+gJInu9FnTlzBg8ePIBMJst1IGj37t2xePFibN26FaNGjVLe7urSpQtOnTqFuXPnAlDv1qQwe/Zs9O/fH5MnT8aaNWvg6uoKS0tLPHv2DLdv38bt27excePGPL/N2d/fH3/99RemTZuGM2fOoEqVKnj48CGOHDmCNm3aKF9S864ffvgBvXv3xk8//YRjx44p3yOxb98++Pj44ODBgyo/9kZGRpg/fz4GDx6MIUOGoH79+nBycoKJiQmePXuGq1ev4vHjxzhx4gRMTU3zFDcA5YAhuVyO5ORk3LlzB9HR0cjMzISLiwtmzZql9tQRbdefGBKJBDNmzMDAgQMxduxYREREoHr16rh//z4OHDgAc3NzzJw5U6XuRowYgcuXL+Pw4cNo164dWrZsCXNzczx9+hQnT57E119/neeToj59+iAsLAxffPEF2rVrhzJlyuDOnTs4fvw4OnTooPG7bty4MSIjIzFq1Ci0aNECJUqUQIUKFbQy8NjIyAj9+vXDokWL0KVLF7Rp0wZZWVk4depUob5B96effkLv3r0xc+ZMnDx5Es7Ozsr3SEilUkybNk3ldryrqysaNGiAc+fOoUePHmjUqBH+/fdfHD58GF5eXhp/fBs3boy//voL3333Hdq2bQtzc3NYWVkhKCioULYxN9r+jmvUqIFffvkFkydPhp+fH5o1a4aqVasiKysLT548QXR0NGxsbD44Zgp429YcPXoUNjY2KFu2rMZEzdPTU2VcgZubGwYOHIiQkBB07twZ7dq1Q2ZmJnbv3o3ExER89913Km+1Bt52S505c6byb8WT3iZPnqzsQvT5558rr1JGRUVh0qRJkMvlaNiwocYXcFpaWiqf9FOYunfvjmvXrmH9+vVo06YNvLy8UL58ebx69QoxMTE4d+4cunbtqnzR1tSpUxEXFwc3NzfY29vDyMgI165dQ1RUFOzt7dWeFvU+d3d3BAcHY82aNfDz80P79u2V75GwsrLS2G9ZbIz5Ua1aNZQtWxa7du2CoaEhKlSoAIlEAn9//xzfJdGqVStUqVIFISEhuH37NpycnPD06VMcPnwYLVu21OqFgLNnz+b4Ms687DvDhw/HzZs3sWHDBhw+fBiNGjVC2bJl8fLlSzx8+BAXLlzA2LFjld3SatasiR9++AE//PADunTpAh8fH1StWhUJCQn4+++/YW5ujjVr1gB4e9fI1dUV58+fx7hx41CtWjXluyccHR01xpOf37ePoVWrVhg5ciRat26NKlWq4MaNGzh27Bisra3xww8/aPxM+/btMX36dMTFxcHGxkbjXfv8KFmyJEJCQjB06FAcO3YMQ4YMwZ9//qnWBbAgxBy/33//PR4+fIh58+Zhx44dcHNzQ+nSpfH8+XPcvXsXV69exZw5c9SSBFNTU3Tp0kW5f+jqbgTwNqnZvXs3Dh06BD8/P/j4+CArKwuRkZGoW7eu8q7iu8QeK5MmTcKTJ0/w7bffKu9gOTo6YsKECZgyZQomTJig8WXHOclzIqG4G6F4ZFlOKlasiCZNmuDkyZM4fPiw8hZq27ZtMWXKFKSkpEAmk+V4+69cuXLYunUr1q5di3379mHnzp3Izs5G6dKlUbNmTQQFBUEmk+U1bJQtWxbr1q3DrFmzEB0djRMnTqB69er44Ycf0LhxY40nl4o3Nc6dOxdRUVGIioqCg4MDFixYgLt37+LgwYNq/SAdHR2xfft2hISEKN+ALZVKYWdnh9q1a2PUqFFqg/I+RNHfzcjICObm5rC3t0eXLl3Qtm1beHl5aWywtF1/Yrm6umLLli34888/cfr0aRw+fBg2Njbw9fXF8OHDlS/LUTA2Nsby5cuxYcMGbNu2Ddu2bYMgCMo33oq5uuPo6IjVq1fj999/x9GjR5GVlQVHR0csWLAAlpaWGr/rHj164MmTJ9i1axeWL1+OrKwseHp6au0JRqNHj4apqSk2bdqETZs2oXTp0ujYsSNGjRr1wRMYbalUqRK2bt2KRYsW4dixYzh79izMzc3RrFkzDBs2TOOFgUWLFmHmzJk4ePAg1qxZg6pVq+Krr75C06ZNsWfPHrX5mzVrhgkTJmDTpk1YtWoVMjMzYW9vrxeJxMf4jv39/eHo6IiQkBCcOXMGJ06cgJmZGcqUKYN27drl+WkoijcoJyQk5Hi3Z+TIkWoDlCdMmACZTIZ169Ypb8XXqVMHgwYN0vhywdevX2vsr79t2zbl/wMCApSJxJMnT5Td1HJ6+6q9vb1OEgngbQLWvHlzbNiwAadOnVIOUCxfvjwGDRqk8njOoUOH4sCBA/j7779x+vRpSCQSVKhQAcOGDUP//v1VHq+bk8mTJ6Nq1apYt24dNmzYAGtra7Rp0wZffvml8jHZBYkxPwwMDLBgwQLMnj0bkZGRyqcvubu755hImJmZYdWqVZg1axbOnj2L8+fPo1KlShg+fDgGDhyosY3Mr7Nnz+bYDSgv+46RkREWLVqE7du3Izw8HEeOHMHr169hY2ODihUr4osvvkCnTp1UPhMYGIhatWphxYoVOHv2LA4ePAhra2s4ODionbvMnDkT06dPx4kTJ7Br1y4IgoBy5crlmEgA4n/fPoa2bduiZ8+eWLx4MY4ePQpDQ0O0bdsWX375ZY6PKjU2NkanTp2watUqBAQEFPgFa++ysLDA8uXLMXz4cJw6dQqDBg3CsmXLtLZ8McevhYUF1qxZg02bNiEiIgL79u1Deno6SpcujSpVqmDixIkaH+EPvE3+FS+d9Pb21lr8YimenrR06VKEh4dj7dq1KFOmDLp164YRI0ZofAKYmGNlzZo1OHDgALy9vREcHKyynL59++L06dPYv38/Vq5cmef2XSK8/wxRytW4ceMQERGBPXv2FEqjQURERFQQwcHBOHfuHCIjI3U+1kkfhYWFYeLEifjf//6HMWPG6DqcIuXj3oMrouRyucbR8adPn8aePXtQs2ZNJhFERESk965cuYKzZ8/Cy8uLSYQGWVlZCAkJgaGhodbeHVGcfLzndRVhmZmZaNmyJRo2bIjq1avDwMAA//zzD06ePAkjIyN8//33ug6RiIiIKEfr169HXFycsqv16NGjdR2SXjl//jzOnTuHs2fP4vbt2wgKCirwG9CLIyYSGiiy0qioKFy+fBlv3ryBjY0N2rdvjyFDhigfB0hERESkj5YvX45nz56hUqVKmDlzZq4PyimOTp8+jQULFsDa2hqBgYH46quvdB1SkcQxEkREREREJBrHSBARERERkWhMJIiIiIiISDQmEkREREREJBoHW1OBCYIAuZxDbbRBKpWwLrWEdakdrEftYV1qD+uy4KRSifLN9kT5xUSCCkwikSAp6TWysuS6DqVIMzSUwsbGnHWpBaxL7WA9ag/rUntYl9pha2sOAwMmElQw7NpERERERESiMZEgIiIiIiLR2LWJtMLAgDlpQSnqkHVZcLqsS7mcY4aIiKh4YCJBWmFlZarrED4ZrEvt0UVdyuUCEhJSmUwQEdEnj4kEFdibrAxcfPqPrsMg0jlzY1O4lK3GJ8oQEVGxwESCCkwuCEjOSNN1GERERERUiNgZm4iIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhLFzL59+xAYGIh69eqhQYMGGDZsGG7fvq3rsIiIiIioiGEiUYxs3rwZo0aNQlpaGsaPH49hw4bh1q1b6NWrF27duqXr8IiIiIioCDHUdQBUOF69eoVff/0V5cqVQ2hoKCwsLAAAHTp0gK+vL3755ResXr1ax1ESERERUVHBOxLFxMGDB5GSkoIePXookwgAqFChAtq1a4czZ87g6dOnOoyQiIiIiIoSJhLFxOXLlwEA9evXV5umKLt69WqhxkRERERERRcTiWIiLi4OAFCuXDm1aYqyZ8+eFWpMRERERFR0MZEoJtLS0gAAxsbGatMUZW/evCnUmIiIiIio6GIiUUyYmpoCADIyMtSmKcpMTEwKNSYiIiIiKrqYSBQTZcuWBaC5+5KiTFO3JyIiIiIiTZhIFBMuLi4AgIsXL6pNu3TpEgCgbt26hRkSERERERVhTCSKidatW8Pc3BybN29GSkqKsvzJkyeIjIyEp6cnypcvr8MIiYiIiKgoYSJRTJQsWRJff/01nj17ht69e2Pt2rVYsWIFgoKCAACTJ0/WcYREREREVJTwzdbFSK9evWBtbY2//voLv/32G4yMjODh4YExY8bA0dFR1+ERERERURHCRKKYad++Pdq3b6/rMIiIiIioiGPXJiIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEM9R1AFT0SSUSWBqb6joMIp0z53FARETFCBMJKjATQ2M0rlRb12EQ6QW5XIBcLug6DCIioo+OiQRpRVJSGrKz5boOo0gzMJDCysqUdakFuqxLJhJERFRcMJEgrcjOliMriye/2sC61B7WJRER0cfDwdZERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWh8jwRphYEBc9KCUtQh67LgWJfaoake+cI9IiJSYCJBWmFlZarrED4ZrEvtYV1qx7v1KMjliE94zWSCiIiYSFDByTPe4M39aF2HQUQfmdTEAiZVXCGVSphIEBEREwnSAkEOeVqSrqMgIiIiokLEDsRERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREohnqOgAqHEuXLsX169dx/fp1PHr0CFKpFNevX9d1WERERERURDGRKCZmz54NKysrODk54fXr14iPj9d1SERERERUhDGRKCb279+PypUrAwCCg4OZSBARERFRgXCMRDGhSCKIiIiIiLSBiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBpfSFdMbNu2DU+ePAEAxMbGQhAELFq0SDl9+PDhugqNiIiIiIogJhLFxNatW3H27FmVsj/++EP5fyYSRERERCQGE4liYs2aNboOgYiIiIg+IRwjQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFohroOgD4BEimkpla6joKIPjKpiYWuQyAiIj3CRIIKTGpsAjOHproOg4gKgSCXQy4XdB0GERHpASYSpBVJSWnIzpbrOowizcBACisrU9alFrAutUNTPcrlAhMJIiICwESCtCQ7W46sLJ6waQPrUntYl9rBeiQiIk042JqIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo3vkSCtMDBgTlpQijpkXRYc61I7imM98oV7RER5x0SCtMLKylTXIXwyWJfaw7rUjuJUj3K5gISEVCYTRER5wESCCiwjMxv3Y17qOgwiogIxMTZEFXtbSKUSJhJERHnARIIKTBAEpL3J1HUYRERERFSIik/HVyIiIiIi0homEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJZqjrAKhwPHjwADt37sTJkyfx+PFjpKamokKFCmjSpAmGDBmCMmXK6DpEIiIiIipCmEgUE1u2bMG6devQqlUrdOjQASYmJrh06RLWr1+PHTt2IDQ0FDVq1NB1mERERERURDCRKCbatWuHIUOGwMrKSlnWs2dP1KtXD99//z3mzZuHP/74Q4cREhEREVFRwjESxUTdunVVkggFX19fAMCtW7cKOyQiIiIiKsKYSBRzcXFxAIDSpUvrOBIiIiIiKkqYSBRziu5MXbt21XEkRERERFSUMJEoxhYvXoy9e/eidevWCAgI0HU4RERERFSEMJHQM4IgfHCelJSUAq9n1apVmDt3Ljw9PTFr1ixIJJICL5OIiIiIig8mEnqmT58+ePToUY7Tjx49qhwgnV8hISGYNm0aGjdujKVLl8LU1LRAyyMiIiKi4oeJhJ55/Pgx/P39sXbtWpXylJQUTJ48GUOHDi3Qy+OWLl2KX3/9Fc2aNcOSJUuYRBARERFRvjCR0DO7du1Cq1atMHXqVPTv3x+xsbE4deoUOnfujB07dmDMmDHYuHFjvpa9ePFizJ49G61atcKiRYtQokQJLUdPRERERMUFX0inZ0qWLIk5c+agbdu2mDJlCnx9fZGeng4nJyf8+eefcHBwyNdy161bh7lz56J06dJo06YN9uzZozLd3NwcrVu31sYmEBEREVExwERCT9nZ2cHMzAzx8fEAACcnJ1SqVCnfy7t69SoA4N9//8WkSZPUptvb2zORICIiIqI8kwh5eUwQFZqMjAzMnTsXq1evRs2aNfHLL7/g+PHjWLRoEcqVK4dp06ahQYMGug5TRXpGFm7cjdN1GEREBWJqYgSHamWQkJCKrCy5VpdtaCiFjY35R1l2ccO61A5bW3MYGLCHOxUM9yA94+/vj9WrV2Pw4MHYsmULnJ2d8b///Q+bN2+GhYUF+vfvj2nTpuk6TCIiIiIq5phI6KHQ0FCMHTsWRkZGyjJHR0ds3rwZw4YNw/r163UYHRERERERx0jonW3btuX4NCVDQ0OMHj2aYxmIiIiISOeYSOgZRRKRkZGBa9eu4eXLl3Bzc4Otra1yntq1a+sqPCIiIiIiAOzapJdWr14NLy8v9OnTB6NGjcKtW7cAAPHx8WjYsCG2bNmi4wiJiIiIqLhjIqFntm7dimnTpqFZs2b45Zdf8O5DtWxtbdGoUSPs3r1bhxESERERETGR0DshISHw8fFRvoH6fXXq1MGdO3d0EBkRERER0X+YSOiZhw8fonnz5jlOt7a2RmJiYuEFRERERESkARMJPWNlZYWEhIQcp//zzz+ws7MrxIiIiIiIiNQxkdAzzZs3x6ZNm5CUlKQ27c6dO9i8eTO8vb11EBkRERER0X/4+Fc9M2bMGAQGBsLPzw+tWrWCRCLBtm3bsHXrVuzbtw92dnYYPny4rsMkIiIiomKOdyT0TNmyZREWFoZmzZphz549EAQB27dvx+HDh+Hr64tNmzapvFOCiIiIiEgXJMK7zxclvRMfHw+5XA5bW1tIpfqZ92VkZuN+zEtdh0FEVCAmxoaoYm+LhIRUZGXJtbpsQ0MpbGzMP8qyixvWpXbY2prDwEA/zyuo6GDXJj1XFO4+GBsZwKFaGV2HQURUYHK5ALmc19eIiPKCiYSOLViwQPRnJBIJRowY8RGiyb+kpDRkZ/PKUEEYGEhhZWXKutQC1qV2FMd6ZCJBRJR3TCR0TFMiIZFIAADv9zqTSCQQBEEvE4nsbDlvMWsJ61J7WJfawXokIiJNmEjo2M2bN1X+jouLw5AhQ1CrVi30798f1apVAwDcu3cPq1atwt27d7FkyRJdhEpEREREpMRRNnrmp59+QpUqVTBr1izUrVsXFhYWsLCwgIuLC2bPno3KlStjypQpug6TiIiIiIo5JhJ6JioqCo0aNcpxeqNGjXD69OlCjIiIiIiISB0TCT1TokQJXLp0KcfpFy9eRIkSJQovICIiIiIiDThGQs906tQJa9asgZWVFYKCglC5cmUAwKNHj7BmzRpEREQgODhYx1ESERERUXHHRELPjB8/HgkJCVi7di3WrVunfAmdXC6HIAjw9fXF+PHjdRwlERERERV3fLO1nrp58yaOHTuG2NhYAIC9vT2aN28OR0dHHUemWXF6zvzHUhyf2f+xsC61ozjV48d+fwTfxqw9rEvt4JutSRuYSBARUbEnyAXEJ6R+tGSCJ7/aw7rUDiYSpA3s2qTHUlNTkZSUpPZiOgCoUKGCDiLSTJ6RhdT7L3UdBhFRvkhNDGFepRSkUgnfak1EJAITCT2Tnp6OBQsWYMuWLUhMTMxxvhs3bhReUB8gCEB2WqauwyAiIiKiQsREQs/8+OOP2LZtG1q3bg13d3eULFlS1yEREREREalhIqFn9u/fjx49evDt1URERESk1zjKRs9IJBLUrl1b12EQEREREeWKiYSe8fHxwalTp3QdBhERERFRrphI6Jnhw4cjJiYG3333Hf7++2/Ex8cjMTFR7R8RERERkS5xjISeadu2LQDg+vXr2LJlS47z6dNTm4iIiIio+GEioWdGjBgBiUSi6zCIiIiIiHLFRELPjBo1StchEBERERF9EMdIEBERERGRaLwjoQf27dsn+jOKsRRERERERLrAREIPjB49GhKJBIIg5Gl+iUTCwdZEREREpFNMJPTA6tWrdR0CEREREZEoTCT0gKenp65DICIiIiIShYlEMREfH4/ffvsN165dQ1xcHF6/fg07Ozu4urpi8ODBqFOnjq5DJCIiIqIihIlEMZGcnIz79++jSZMmqFChAkxNTREbG4vw8HAEBgZi8eLFaNasma7DJCIiIqIiQiLkdYQvfZLi4uLQqlUreHh45HusRnZ6FpJvPNNyZEREhcPA1AiWDmWRkJCKrCz5R1mHoaEUNjbmH3UdxQXrUjtsbc1hYMC3AFDBcA8q5kqXLo0SJUogOTlZ16EQERERURHCrk3FTGZmJpKTk5GdnY2nT59ixYoVeP36NVq2bKnr0IiIiIioCGEioWcuX74MV1fXj7b8CxcuoF+/fsq/LS0t8fnnn2PEiBEfbZ1ERERE9OlhIqFnevbsiSpVqqBz587o3LkzKlWqpNXlOzo6IiQkBBkZGXjw4AG2b9+O1NRUZGRkwNCQuwMRERER5Q0HW+uZnTt3YufOnTh16hSys7Ph6uoKf39/dOjQAdbW1lpf36tXr+Dv74+aNWti+fLl+VoGB1sTUVHGwdZFC+tSOzjYmrSBe5Ce6dSpE5YuXYpjx45h8uTJAICffvoJzZo1w/DhwxEZGYmMjAytra9kyZLw9vbG8ePHERMTo7XlEhEREdGnjX1Z9JStrS2CgoIQFBSER48eKe9UjB07FpaWlmjXrh38/f3h4eFR4HW9efMGAJCUlFTgZRERERFR8cA7EkVAiRIlYGpqihIlSkAQBEgkEhw8eBDBwcHo1q0b/vnnnw8u499//9VYHhMTg4MHD8LS0hI1atTQduhERERE9IniHQk9lZKSgr1792Lnzp04d+4cJBIJmjdvjhEjRqBVq1aQSqXYv38/ZsyYgYkTJ2Lz5s25Lm/JkiU4deoUmjdvjooVKwIA7t27h23btuH169f49ddfUaJEicLYNCIiIiL6BDCR0DMHDhzAzp07ceTIEaSnp6Nu3bqYNGkSOnbsCBsbG5V527dvj6SkJEyZMuWDy23VqhXi4uKwd+9exMfHIysrC2XKlEHLli3Rv39/uLi4fKxNIiIiIqJPEBMJPTNy5EiUL18eAwYMgL+/P6pXr57r/I6OjujUqdMHl9ukSRM0adJEW2ESERERUTHHRELPrFq1Cg0bNszz/C4uLrybQERERESFjoOt9cz7SURycjKys7N1FA0RERERkWZMJPTQ1atXMWjQILi6uqJhw4Y4e/YsACA+Ph7/+9//cObMGR1HSERERETFHRMJPXPhwgX06dMHDx8+ROfOnSGX//fWTltbW6SkpGDjxo06jJCIiIiIiImE3pk7dy5q1KiB3bt3Y+zYsWrTGzZsiMuXL+sgMiIiIiKi/zCR0DNXr15F165dYWxsDIlEoja9bNmyOb5cjoiIiIiosDCR0DOGhoYq3ZneFxcXBzMzs0KMiIiIiIhIHRMJPePq6oq9e/dqnPb69WuEhYWhQYMGhRwVEREREZEqJhJ6ZvTo0fj7778xZMgQHDt2DABw69YtbN68GV27dkV8fDyGDx+u4yiJiIiIqLiTCIIg6DoIUnX69Gn8+OOPePjwoUp55cqVMXXqVHh6euooMs2y07OQfOOZrsMgIsoXA1MjWDqURUJCKrKycu5aWhCGhlLY2Jh/1HUUF6xL7bC1NYeBAa8nU8HwzdZ6qHHjxti7dy9u3LiBBw8eQBAEVKpUCc7OzhoHYBMRERERFTYmEnrMyckJTk5Oug6DiIiIiEgNEwk9c+PGDdy9exd+fn7KsuPHj2Px4sXIyMiAn58f+vfvr8MI1Ukkb7sGEBEVRVIT/hQSEeUHW08989tvv8HExESZSDx+/BgjR46EtbU1ypQpg19//RUmJibo2bOnjiP9j9TYEJYOZXUdBhFRvglyAXI5hwwSEYnBRELP3Lx5E4MGDVL+vX37dkilUoSHh8PW1hZjxozBhg0b9CqRAICkpDRkZ3PQW0EYGEhhZWXKutQC1qV2FKd6lDORICISjYmEnklOToa1tbXy76NHj6Jp06awtbUFADRt2lT5WFh9kp0t59MztIR1qT2sS+1gPRIRkSZ87peesbOzw927dwEAz58/x7Vr19C0aVPl9NTUVEil/NqIiIiISLd4R0LP+Pj4YO3atcjIyMDly5dhbGyMNm3aKKffunULlSpV0mGERERERERMJPTOmDFjEB8fj+3bt8PS0hLTp09H6dKlAQApKSmIjIxE3759dRwlERERERV3TCT0jLm5OWbPnq1xmpmZGY4dOwYTE5NCjoqIiIiISBUTiSJEKpXC0tJS12EQERERETGR0EevXr1CREQEYmJi8OrVKwiC6iMJJRIJpk2bpqPoiIiIiIiYSOid48ePY/To0UhLS4OFhQWsrKzU5pFIJDqILHcGBnySVEEp6pB1WXCsS+34lOuR740gIio4ifD+5W7SKT8/P2RkZGD+/PlwcHDQdThERJ8kQRAQH59aaMmEoaEUNjbmSEhI5Ts5Coh1qR22tuaf5EUCKly8I6FnHj58iK+//rpIJRHZ8gy8TL2v6zCIiPLE0MAEtmZVIJVKeFeCiKgAmEjomapVqyI1NVXXYYgiQECmPE3XYRARERFRIeI9LT3zxRdfYP369YiJidF1KEREREREOeIdCT0TFRUFW1tbdOzYEU2aNEH58uVhYGCgNt+3336rg+iIiIiIiN7iYGs94+jo+MF5JBIJbty4UQjR5E2WPB1xyfoTDxFRboykpihj6VCog3U5QFh7WJfawcHWpA28I6Fnbt68qesQiIiIiIg+iKkoERERERGJxkSCiIiIiIhEY9cmHXN0dIRUKsWlS5dgbGwMR0fHD765WiKR4Pr164UUIRERERGROiYSOjZixAhIJBIYGhqq/E1EREREpM/41KYiSC6XQyrVn15pfGoTERUlfGpT0ca61A4+tYm0gXuQHjhx4kSe583IyMCIESM+YjRERERERB/GREIPjBgxIk/JRGpqKgYNGoQjR458/KCIiIiIiHLBREIP1KpVCyNGjMCxY8dynCchIQH9+vXDuXPn8PXXXxdidERERERE6phI6IGVK1dCJpNh5MiROHr0qNr0uLg49O3bFzdv3sS0adMwcOBAHURJRERERPQfJhJ6wMLCAiEhIXBycsKoUaNUui49ePAAvXv3RkxMDP744w907dpVK+uUy+UIDAyEg4MDBgwYoJVlEhEREVHxwURCT1hYWGDFihWoXbs2Ro0ahcOHD+PGjRvo06cPEhMTsWTJErRu3Vpr61u1ahXu3LmjteURERERUfHCREKPmJubY8WKFahbty5Gjx6N4OBgyOVyrFq1Co0bN9baeh4/fow//vgDY8aM0doyiYiIiKh4YSKhB65du6b8d//+fYwdOxZ2dnbIysrCxIkTIZVKVea5du1agdb37bffombNmggODtbSFhARERFRccM3W+uBbt26qb3NWvGewAkTJqiVSyQS3LiRvxfAbdq0CefPn8fWrVv16qV2RERERFS0MJHQA9OnTy+U9cTFxWHmzJkYOHAgHB0dC2WdRERERPRpYiKhBwICAgplPT/++CNsbGwwcuTIQlkfEREREX26mEgUE7t27cKhQ4cQEhICExMTXYdDREREREUcE4liICMjA1OnToWXlxfs7e3x8OFDlelv3rzBw4cPYW5ujtKlS+soSiIiIiIqSiSCYlQvfbKSkpLQoEGDD87XsWNHzJ07V/Tys+TpiEvO3+BvIqLCZiQ1RRlLByQkpCIrS14o6zQ0lMLGxrxQ1/mpYl1qh62tOQwM+NAVKhjekSgGTE1N8ccff2ic9sUXX0Amk2HEiBEoX758IUdGREREREUVE4liwMjICO3bt89xeqlSpXKdTkRERET0Pt7TIiIiIiIi0XhHopi7deuWrkMgIiIioiKIdySIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEs1Q1wFQ0SeBBEZSU12HQUSUJ4YGJroOgYjok8BEggrMQGqMMpYOug6DiCjPBEGAXC7oOgwioiKNiQRpRVJSGrKz5boOo0gzMJDCysqUdakFrEvt+JTrUS5nIkFEVFBMJEgrsrPlyMr6tE40dIV1qT2sS+1gPRIRkSYcbE1ERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicb3SJBWGBgwJy0oRR2yLguOdakdrEft0XVd8gV8RPQxSARBYMtCRET0CRMEOeLjX38SyYShoRQ2NuZISEjlixILwNbWnBcJqMB4R4IKTJ79BulJF3QdBhERaSA1tEAJSxdIpZJPIpEgIv3BRIK0QA4hO1nXQRARkQa8Zk9EHwvvaRERERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJZqjrAKjwODg45Dht586dkMlkhRgNERERERVlTCSKGQ8PDwQGBqqVly9fXgfREBEREVFRxUSimKlUqRL8/f11HQYRERERFXEcI1EMZWZmIiUlRddhEBEREVERxkSimNm7dy9cXV3h7u4ODw8PjB8/HjExMboOi4iIiIiKGHZtKkacnZ3Rrl07VK1aFRkZGYiOjsbmzZtx/PhxrF+/HjVq1NB1iERERERUREgEQRB0HQTpztGjRzFkyBB4eXnhr7/+ytcy5Nmv8SbhuJYjIyIibZAYWMLUpgkSElKRlSXXdTgFZmgohY2N+SezPbpia2sOAwN2TKGC4R5UzLVo0QKurq6IiopCenq6rsMhIiIioiKCiQShYsWKyMrKQmJioq5DISIiIqIigokE4cGDBzAyMoKNjY2uQyEiIiKiIoKJRDGRkJCgsTwiIgLXrl2Dl5cXjI2NCzkqIiIiIiqq+NSmYuLPP//EhQsX0KhRI5QvXx6ZmZm4cOEC9u3bBzs7O0yePFnXIRIRERFREcJEopho2LAh7t27h507dyIhIQGCIMDe3h4DBgzA559/jlKlSuk6RCIiIiIqQphIFBM+Pj7w8fHRdRhERERE9IngGAkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRDPUdQD0KZBCYmCp6yCIiEgDqaGFrkMgok8UEwkqMKmBCUxtmug6DCIiyoEgyCGXC7oOg4g+MUwkSCuSktKQnS3XdRhFmoGBFFZWpqxLLWBdagfrUXt0XZdyucBEgoi0jokEaUV2thxZWTzR0AbWpfawLrWD9ag9rEsi+pRwsDUREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBrfI0FaYWDAnLSgFHXIuiw41qV2sB5V8aVuRESqmEiQVlhZmeo6hE8G61J7WJfawXp8S5ALiE9IZTJBRPT/mEhQgWVnZSL5xQNdh0FE9NEYGJWAZenKkEolTCSIiP4fEwnSAjmyM9N0HQQRERERFSJ2fCUiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISzVDXAVDhSklJwbJly7Bv3z7ExsbCxMQEVapUQVBQEPz9/XUdHhEREREVEUwkipG4uDj069cPCQkJCAgIQM2aNZGWloYHDx7gyZMnug6PiIiIiIoQJhLFyNdff43U1FRs374d5cuX13U4RERERFSEcYxEMREdHY2oqCgMHjwY5cuXR3Z2NlJTU3UdFhEREREVUUwkiomjR48CACpXroxRo0bB1dUVbm5u8PLywqJFi5Cdna3jCImIiIioKGHXpmLi7t27AIDJkyejYsWKmDp1KgAgNDQUf/zxB54+fYqff/5ZlyESERERURHCRKKYUHRjMjU1xbp162BsbAwA6NixI3x9fbF582YMHDgQ1atX12WYRERERFREsGtTMWFiYgIA6NSpkzKJAABjY2N06tQJgiDgzJkzugqPiIiIiIoYJhLFRLly5QAAdnZ2atMUZa9evSrUmIiIiIio6GIiUUzUq1cPAPD06VO1ac+ePQMAlCpVqjBDIiIiIqIijIlEMeHj4wMrKyts374dKSkpyvLU1FSEh4fDyMgIXl5eOoyQiIiIiIoSDrYuJiwtLTF58mR888036N69O7p37w6JRIKtW7ciLi4OY8eO5UvqiIiIiCjPmEgUI126dIGNjQ2WLVuGhQsXQi6XQyaTYc6cOfD19dV1eERERERUhDCRKGZatGiBFi1a6DoMIiIiIiriOEaCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJERERERCQaEwkiIiIiIhKNiQQREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItEMdR0AfQqkMDAy1XUQREQfjYFRCV2HQESkd5hIUIEZGBrBunwtXYdBRPRRCXIBcrmg6zCIiPQGEwnSiqSkNGRny3UdRpFmYCCFlZUp61ILWJfawXpUJWciQUSkgokEaUV2thxZWTzR0AbWpfawLrWD9UhERJpwsDUREREREYkmEQSB92mpwNjtQTsMDKSsSy1hXWoH61F7WJfaw7osOKlUAolEouswqIhjIkFERERERKKxaxMREREREYnGRIKIiIiIiERjIkFERERERKIxkSAiIiIiItGYSBARERERkWhMJIiIiIiISDQmEkREREREJBoTCSIiIiIiEo2JBBERERERicZEgoiIiIiIRGMiQUREREREojGRICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINENdB0D6zcHBIcdpO3fuhEwmU/6dlZWFFStWYOvWrYiNjYW1tTV8fHwwZswY2NjYFEa4ei2vdXnmzBn069dP43zW1tY4c+bMR4mvKElJScGyZcuwb98+xMbGwsTEBFWqVEFQUBD8/f2V86WlpWHhwoXYvXs3nj9/jjJlysDX1xfDhw+HqampDrdAf+SlLsPCwjBx4kSNn69Tpw7CwsIKM2S9M3/+fCxYsCDXeY4dO4ayZcsCYFuZEzH1yHbyw1JSUrBq1SpERkYiJiYGxsbGqFixIrp27YrAwEAYGRkp52VbSfnFRII+yMPDA4GBgWrl5cuXV/l74sSJ2LFjB1q1aoVBgwYhJiYGq1atwoULF7Bx40aYmZkVVsh6K691CQA9e/aEu7u7SlmJEiU+WmxFRVxcHPr164eEhAQEBASgZs2aSEtLw4MHD/DkyRPlfNnZ2RgyZAjOnj0Lf39/NGjQADdv3sRff/2FK1euICQkBFJp8b4pm9e6VBg2bBiqV6+uUmZtbV1I0eqvNm3aoHLlymrlT548we+//446deookwiAbWVOxNYjwHYyJ1lZWejfvz+uX7+OLl26oG/fvsjIyMC+ffswZcoUXLx4EbNmzQLAtpIKSCDKhUwmE7755psPznfq1ClBJpMJw4YNUymPjIwUZDKZMH/+/I8VYpGR17qMiooSZDKZsHXr1kKIqujp16+f0LRpU+HJkye5zrd582ZBJpMJP//8s0r5X3/9JchkMiE8PPwjRlk05LUut27dKshkMiEqKqqQIvs0zJ07V5DJZEJoaKiyjG2leJrqke1k7k6ePCnIZDLh119/VSnPysoS/P39BUdHRyE5OVkQBLaVVDBMMSlPMjMzkZKSkuP07du3AwAGDhyoUt6uXTvY29srp9OH6/JdaWlpePPmzUeOqOiIjo5GVFQUBg8ejPLlyyM7Oxupqaka581pn+zTpw9MTEywbdu2jx2uXhNTl+9KTU1FRkZGIURYtGVnZyMsLAxmZmbw8/NTlrOtFCenenwX20l1ycnJAIAyZcqolBsYGKB06dIwMDCAsbExALaVVDBMJOiD9u7dC1dXV7i7u8PDwwPjx49HTEyMyjyXL1+GVCpFvXr11D5fv359PHr0CImJiYUTsB7LS10q/PLLL6hXrx5cXV3RokULzJ49G2lpaYUcsX45evQoAKBy5coYNWoUXF1d4ebmBi8vLyxatAjZ2dkAAEEQcPXqVZQpUwb29vYqyzAxMYGTkxOuXr1a6PHrk7zW5buGDx8ONzc31K1bF23btsWyZcuQlZVV2KEXCceOHUNcXBw6dOgACwsLZTnbSnFyqkcFtpOaubm5wczMDEuXLsXu3bvx5MkT3L9/H4sWLcKJEycwfPhwGBsbs62kAuMYCcqVs7Mz2rVrh6pVqyIjIwPR0dHYvHkzjh8/jvXr16NGjRoAgGfPnsHGxkZ5heNdij6tz549K9b9qfNal4aGhmjZsiWaN2+O8uXLIz4+HgcOHMDSpUtx6tQprF27ttgOfrt79y4AYPLkyahYsSKmTp0KAAgNDcUff/yBp0+f4ueff0ZiYiLS0tJQq1YtjcspW7YsLl68iJSUFI0nJ8VBXusSeHtC0aFDBzRp0gR2dnaIi4vD9u3bMWvWLERHR2PRokXsQ/2eTZs2AXjbh/9dbCvFyake2U7mzs7ODosWLcKPP/6IsWPHKstLlCiBX375Bd26dQMAtpVUYEwkKFdbt25V+dvPzw8tW7bEkCFDMG3aNPz1118AgDdv3qBkyZIal6EY+Fbcbz3ntS7d3d2xZMkSlXm7d++OWbNmYdmyZVizZg2GDBlSaHHrE0XXG1NTU6xbt055MtaxY0f4+vpi8+bNGDhwoPIEQtPJGvDfPpmWllZsfxzzWpfVq1dHx44d0bFjR5XP9+zZE+PGjcOuXbuwZ88e+Pr6Fvo26Kvnz5/j6NGjkMlkcHV1VZnGtjLvcqtHtpMfZmFhgWrVqsHT0xNNmzbFmzdvEB4eju+++w4SiQRdu3ZV7mtsKym/eAmJRGvRogVcXV0RFRWF9PR0AG+vWObUb/rdeUiVprrMyfDhwyGVSnH48OFCik7/KPahTp06qfzwGRsbo1OnThAEAWfOnFHO96F9sjhfscxrXeZEIpFgxIgRAFCs90lNwsLCkJ2drfEJbWwr8y63eswJ28m3bt68iT59+qBmzZr4+eef0b59e3Tp0gUhISGoW7cupkyZgvj4eLaVVGBMJChfKlasiKysLGVf3nLlyiEhIUFjYxQXF6ech9S9X5c5MTMzQ6lSpRAfH184gekhxT5kZ2enNk1R9urVK1hbW8PU1BTPnj3TuJy4uDhYWFgU6ytsea3L3FSqVAkAivU++T5BELBlyxaYmJiovNNEgW1l3nyoHnPCdvKtVatWISMjA+3bt1cpl0qlaNeuHdLS0nDlyhW2lVRgTCQoXx48eAAjIyPly5NcXFwgl8tx+fJltXkvXryIypUrs89vDt6vy5ykpKTg33//RenSpQspMv2jGKD69OlTtWmKH8JSpUpBIpHA2dkZz58/R2xsrMp8b968wY0bN1C3bt2PHq8+y2td5ub+/fsAUKz3yfedPn0ajx8/Rrt27WBlZaU2nW1l3nyoHnPCdvKt58+fAwDkcrnaNMUDErKysthWUoExkaAcJSQkaCyPiIjAtWvX4OXlpewSobhitGLFCpV5FW/LFXNF6VMkpi41zSsIAmbOnAlBENC6deuPGqs+8/HxgZWVFbZv367yCN3U1FSEh4fDyMgIXl5eAP7bJ0NCQlSWERoaijdv3hT7fVJMXWraJ7OysjBnzhwAKNb75Ps2b94MADl2x2FbmTcfqke2k7mrWbMmAKi9dT4zMxMREREwMDBQJghsK6kgJIIgCLoOgvTTtGnTcOHCBTRq1Ajly5dHZmYmLly4gH379qF06dIIDQ1Vdm0AgHHjxiEiIgKtWrWCj48PYmJisHLlSlSsWBGbNm2Cubm5DrdGt8TUZbdu3VC6dGk4OzujXLlyiI+Px8GDB3H58mU0aNAAK1asyHFgXHGwbds2fPPNN6hWrRq6d+8OiUSCrVu34u7duxg7diyGDRsG4O3z5/v164fz58+jS5cu8PDwwK1bt7B+/Xq4u7tj5cqVMDAw0PHW6FZe69LLywvu7u6QyWQoU6YM4uLisHv3bty9exe+vr6YPXs2JBKJjrdG9+Lj49G8eXNUqlQJe/bsyXE+tpW5y0s9sp3M3ZMnT9C1a1ckJCSgVatWaNasGdLS0rBjxw7cunULAwcOxIQJEwCwraSCYSJBOTp48CBCQ0Nx584dJCQkQBAE2Nvbo2XLlvj888/Vuj1kZmZixYoVCAsLQ2xsLKytreHt7Y0xY8bA1tZWR1uhH8TU5dKlS3H48GE8fPgQSUlJMDIyQo0aNeDn54e+ffvCyMhIh1uiH44ePYply5bh2rVrkMvlkMlkGDBggNqTg1JTU7Fw4ULs2bMHL168gJ2dHTp27IgRI0bAzMxMR9Hrl7zU5YwZM3D27FnExMQgJSUFpqamcHBwQLdu3RAQEMAk4v+FhITg119/xYQJE9Re7vUutpW5y0s9sp38sJiYGCxatAinTp3CixcvYGRkhFq1aiEwMFB54UCBbSXlFxMJIiIiIiISjWMkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESiMZEgIiIiIiLRmEgQEREREZFoTCSIiIiIiEg0JhJEpOLYsWPw9/dH3bp14eDggKSkJNHLcHBwwJQpUz5CdEXLmTNn4ODggDNnzmh1uQ4ODpg/f75Wl/kxcX9QFRMTAwcHB4SFhek6lGLN29sbEyZM0HUYREUaEwn6aMLCwuDg4KD8V7duXbRr1w5TpkzBv//+q+vwCuyff/7B/PnzERMTo+tQtCYhIQFjxoyBiYkJvv/+e8ycOROmpqYa571w4QLmz5+fr0RDW7y9vVX2scaNG6NPnz7Yv3+/zmLSlqNHjxapZEGX9u3bBwcHB2zevDnHeU6ePAkHBwesXr06z8tdt26dTk/2FYmo4p+zszOaNGmC4OBgLF68GPHx8TqLTR/t3LkTK1eu1Nn6T58+jYkTJ6Jdu3ZwdXWFj48PJk+ejOfPn2uc/8KFC+jduzdcXV3RtGlTTJ06FampqSrzpKamYt68eRg0aBA8PT1zTEDlcjnCwsIwbNgwtGjRAvXq1YOfnx8WLVqE9PT0j7K9RABgqOsA6NM3evRoVKxYERkZGYiOjkZoaCiOHj2KiIiIHE9Si4J//vkHCxYsgKenJypWrKjrcLTi6tWrSE1NxRdffIEmTZrkOu/FixexYMECBAQEwMrKqpAiVOfk5ISBAwcCAJ4/f46NGzdi5MiR+PHHH9G7d2+dxVVQR48exbp16zBq1Ci1aVeuXIGBgYEOotJPLVu2hKWlJXbu3IkePXponCciIgIGBgbw9fXN83JDQ0NhY2ODrl27aivUfAkODkbdunUhl8sRHx+PixcvYv78+QgJCcHvv/+Oxo0b6zQ+fREREYE7d+5gwIABeZo/MjISEolEa+v/7bff8OrVK7Rv3x5Vq1bF48ePsXbtWhw5cgTbtm2DnZ2dct4bN25gwIABqFGjBiZMmIBnz55hxYoVePDgAZYvX66cLyEhAQsXLkSFChXg4OCAs2fPalx3WloaJk6ciHr16qFXr14oVaqUcj85ffo0Vq9erdVtJVJgIkEfXfPmzVG3bl0AQI8ePWBtbY2QkBAcPHgQfn5+BVp2WlpakU5G9I3iCqelpaWOI8m7smXLwt/fX/l3ly5d0LZtW6xcubJIJxK5KVGihK5D0CvGxsZo164dwsLCEBcXh7Jly6pMT09Px/79+9GkSROUKlVKR1Hmn4eHB9q3b69SdvPmTXz22WcYPXo0du3ahTJlyugouo/nY7fvxsbGWl3exIkT4e7uDqn0v84ezZo1Q1BQENauXYuxY8cqy+fMmQMrKyusWbMGFhYWAICKFSvi22+/xYkTJ+Dl5QUAKFOmDE6cOAE7OztcvXoV3bt317huIyMjhIaGws3NTVkWGBgIe3t7ZTLxoYtDRPnBrk1U6Bo1agQAKl2Ctm/fjq5du8LFxQWenp4YO3Ysnj59qvK54OBg+Pn54e+//0bfvn3h6uqKOXPmAHh7ojB//ny0a9cOdevWhZeXF0aOHIlHjx4pPy+Xy7Fy5Ur4+vqibt26aNKkCb7//nu8evVKZT3e3t4YOnQozp8/j+7du6Nu3brw8fHBtm3blPOEhYXhiy++AAD069dP2fVA0Rf+wIEDGDJkCLy8vODs7IzWrVtj4cKFyM7OVquPdevWwcfHBy4uLujevTvOnz+P4OBgBAcHq8yXkZGBefPmoU2bNnB2dkaLFi0wc+ZMZGRk5Kne9+zZo6zjhg0bYvz48YiLi1Op32+++QYA0L17dzg4OOTYf3j+/PmYOXMmAMDHx0e5/e938zpw4AD8/Pzg7OwMX19fHDt2TG1ZcXFxmDhxIpo0aaKcb8uWLXnaJk3s7OxQvXp1xMbGKsuuX7+OwYMHw83NDfXr10f//v1x6dIllc8puuKdO3cO33//PRo2bAg3Nzd8/fXXavtITmMU8tLn+vz58xg9ejRatmyp/B6nTZuGN2/eKOeZMGEC1q1bp1yX4l9u6xezjdHR0Zg+fToaNWqEevXqYcSIER/sJnPw4EE4ODjg5s2byrK9e/fCwcEBI0eOVJm3Q4cOGDNmjNoy8rI/5GU7NOncuTPkcjl2796tNu3IkSNITk5Gp06dAABZWVlYuHAhWrduDWdnZ3h7e2POnDkqx5K3tzfu3LmDs2fPKuv/3WMyKSkJv/zyC1q0aAFnZ2e0adMGS5cuhVwuV1l3UlISJkyYAHd3d3h4eOCbb75BcnLyB7fnQxwdHTFp0iQkJSUp9xWFvBxTim5Tu3fvxoIFC9CsWTPUr18fo0ePRnJyMjIyMvDLL7+gcePGqF+/PiZOnKjW1uSlHhWOHj2KoKAg1K9fH25ubujWrRt27typnJ5b+56X9jQ4OBhHjhxBbGys8vvy9vbOtQ7fP14LcnwAQIMGDVSSCEWZtbU17t27pyxLSUnBqVOn0LlzZ2USAQD+/v4wMzPDnj17lGXGxsYqdzJyYmxsrJJEKLRp0wYAcPfu3Q8ugyg/eEeCCp3i5N7a2hoA8Oeff+KPP/5Ahw4d0L17d8THx2Pt2rXo27cvtm3bptJtJjExEZ9//jl8fX3RuXNnlCpVCtnZ2Rg6dChOnz4NX19f9OvXD6mpqTh58iRu376NypUrAwC+//57hIeHo2vXrggODkZMTAzWrVuH69evIzQ0FEZGRsr1PHz4EF988QW6d++OgIAAbN26FRMmTECdOnVQq1YtNGjQAMHBwVizZg2GDRuG6tWrAwBq1KgBAAgPD4eZmRkGDhwIMzMzREVFYd68eUhJSVGerAPA+vXrMWXKFHh4eGDAgAGIjY3FiBEjYGVlhXLlyinnk8vl+N///ofo6GgEBgaiRo0auH37NlatWoUHDx5g0aJFudZ5WFgYJk6ciLp16+LLL7/Ey5cvsXr1aly4cEFZx8OGDUO1atWwceNGZXc0Rd29r02bNnjw4AEiIiIwceJE2NjYAABsbW2V80RHR2Pfvn3o06cPzM3NsWbNGowePRqHDx9Wzv/vv/8iMDAQEokEffv2ha2tLY4dO4bJkycjJSUlz10U3pWZmYlnz54p9687d+6gb9++MDc3x+DBg2FoaIiNGzciODgYa9euhaurq8rnp0yZAisrK4wcORL3799HaGgonjx5gjVr1mila0BkZCTevHmD3r17w9raGleuXMHatWvx7NkzzJs3DwDQs2dPPH/+HCdPnlQmbLkRu41Tp05VbmNsbCxWrVqFKVOm4Pfff89xHe7u7pBIJDh//jwcHR0BvE2KpFIpoqOjlfPFx8fj3r17CAoKUvl8XvYHsdvxrgYNGqBcuXLYuXOnsqubgqIbZevWrQEA3377LcLDw9GuXTsMHDgQV65cwZIlS3D37l0sXLgQADBp0iT8/PPPMDMzw7BhwwAApUuXBvD2SnlQUBDi4uLQq1cvlC9fHhcvXsScOXPw4sULTJ48GQAgCAKGDx+O6Oho9OrVCzVq1MD+/ftV2oCCaNeuHSZPnowTJ04or3aLPaaWLl0KExMTDBkyBA8fPsTatWthaGgIiUSCpKQkjBw5EpcvX0ZYWBjs7e1Vksa81CPwtv2ZNGkSatWqhaFDh8LS0hI3btzA8ePHlckdoLl9B/LWng4bNgzJycl49uwZJk6cCAAwNzfPV73m5/jISWpqKlJTU5X7OADcunULWVlZcHZ2VpnX2NgYTk5OuHHjRr7i1kQxHvHd9RNplUD0kWzdulWQyWTCqVOnhJcvXwpPnz4Vdu3aJXh6egouLi7Cs2fPhJiYGMHJyUn4888/VT5769YtoXbt2irlQUFBgkwmE0JDQ1Xm3bJliyCTyYSQkBC1GORyuSAIgnDu3DlBJpMJO3bsUJl+7NgxtfJWrVoJMplMOHfunLLs5cuXgrOzs/Drr78qy/bs2SPIZDIhKipKbb1paWlqZd99953g6uoqpKenC4IgCOnp6YKnp6fQrVs3ITMzUzlfWFiYIJPJhKCgIGXZtm3bBEdHR5WYBEEQQkNDBZlMJkRHR6utTyEjI0No3Lix4OfnJ7x580ZZfvjwYUEmkwl//PGHskzxnV25ciXH5SksX75ckMlkwuPHj9WmyWQyoU6dOsLDhw+VZTdu3BBkMpmwZs0aZdmkSZOEpk2bCvHx8SqfHzt2rODu7q6xHt/VqlUr4bPPPhNevnwpvHz5Urhx44YwduxYQSaTCT///LMgCIIwfPhwoU6dOsKjR4+Un4uLixPq168v9O3bV23bAwIChIyMDGX5smXLBJlMJhw4cEBl++bNm6cxnm+++Ub5d1RUlNo+ommblixZIjg4OAixsbHKsp9++kmQyWQat/v99YvdxgEDBiiPDUEQhGnTpglOTk5CUlKSxvUp+Pr6Cl988YXy74CAAGH06NGCTCYT/vnnH0EQBGHfvn2CTCYTbty4oRJvXvaHvG5HTmbMmCHIZDLh3r17yrLk5GShbt26wpdffqmy3smTJ6t89tdffxVkMplw+vRple199zhUWLhwoVCvXj3h/v37KuWzZs0SnJychCdPngiCIAj79+8XZDKZsGzZMuU8WVlZQp8+fQSZTCZs3bo11+1R7D979uzJcZ7OnTsLDRo0UP6d12NKsWw/Pz+V/f3LL78UHBwchMGDB6t8vmfPnkKrVq2Uf+e1HpOSkoT69esLPXr0UGl/BEFQ2Qdzat8FIW/tqSAIwpAhQ1Ri/JD3j9eCHh+aLFy4UPk7qKD47Xi/PRcEQRg9erTQtGlTjcu6cuVKnvabdw0YMEBwc3MTXr16JTp2orxg1yb66AYMGIDGjRujRYsWGDt2LMzNzbFgwQKULVsW+/fvh1wuR4cOHRAfH6/8V7p0aVSpUkXtsZnGxsZqAx/37dsHGxsbtSugAJRXkCMjI2FpaYmmTZuqrKdOnTowMzNTW0/NmjXh4eGh/NvW1hbVqlXD48eP87TNJiYmyv+npKQgPj4eHh4eSEtLU97i/vvvv5GYmIjAwEAYGv53c7BTp04oWbKkyvIiIyNRo0YNVK9eXSV+RTex3B4v+vfff+Ply5fo3bu3St/6li1bonr16jhy5EietkmsJk2aqNzRcHR0hIWFhbIOBUHAvn374O3tDUEQVLbLy8sLycnJuHbt2gfXc+LECTRu3BiNGzeGv78/IiMj4e/vj/HjxyM7OxsnT55E69atUalSJeVnypQpAz8/P0RHRyMlJUVleT179lS5O9W7d28YGhri6NGjBa0SAKr7xuvXrxEfH4/69etDEARcv35d9PLys42KK9YKHh4eyM7OVukOpom7uzvOnz8P4O1+ffPmTfTs2RM2NjbKuxLnz5+HlZUVZDKZymc/tD/kZzve17lzZwBv70Ao7N27F+np6cor34rv8f27Fp999pnK9NxERkbC3d0dVlZWKvttkyZNkJ2djXPnzgF4+yhlQ0NDlbE6BgYGGtuq/DIzM1M+6Sc/x5S/v7/K/u7i4gJBENCtWzeV+VxcXPD06VNkZWUByHs9njx5EqmpqRgyZIja2J737/Bpat+BvLWn2pTf4+N9586dw8KFC9GhQweVAfGKboyaxmiUKFFCpZtjQSxevBinTp3CuHHjdPpADPq0sWsTfXTff/89qlWrBgMDA5QuXRrVqlVT9iN98OABBEFA27ZtNX723RNs4O3A2vcb30ePHqFatWpq877r4cOHSE5OzvHpJi9fvlT5u3z58mrzlCxZUq2vfE7u3LmD33//HVFRUWonP4r+0U+ePAEAte5DhoaGsLe3V4v/7t27eY7/XYr1VKtWTW1a9erVVbqlaFNOdah4XGx8fDySkpKwceNGbNy4UeMy8tIv2dXVFWPGjIFEIoGJiQlq1Kih/NF88eIF0tLSNG57jRo1IJfL8fTpU9SqVUtZXqVKFZX5zM3NYWdnJ/okIidPnjzBvHnzcOjQIbX96UMnyprEx8eL3sYKFSqozKeorw89ytfDwwMbNmzAw4cP8ejRI0gkEtSrVw8eHh44f/48AgMDcf78ebi5uan1Fc/L/iB2O97n6OgImUyGiIgI5dOuIiIiYGNjoxy8GhsbC6lUqnbc2dnZwcrKKk/f88OHD3Hr1q0cj0fFfhsbGws7Ozu1LjaatjG/Xr9+rVx+fo6p9/cFxYMW3v++LC0tIZfLkZycDBsbmzzXo6Ira27fm4Km9h3IW3uqTfk9Pt519+5djBw5ErVq1cLUqVNVpikSI01jSdLT01USp/zavXs3fv/9d3Tv3h19+vQp8PKIcsJEgj46FxcX5VOb3ieXyyGRSLBs2TKNj7M0MzNT+Tu/DaxcLkepUqUwa9YsjdPf7dsPoECP1kxKSkJQUBAsLCwwevRoVK5cGSVKlMC1a9cwa9YstcGYeSGXyyGTyZR9f9/37ngKfZFTHQqCAADKeujcuTMCAgI0zvvuAOOc2NjY6M3TSDQNpn9/+sCBA/Hq1SsMHjwY1atXh5mZGeLi4jBhwoR87Rv58f5JvoLiu8mJu7s7gLdXWh8/fozatWvDzMwMHh4eWL16NVJTU3Hjxg2NA60/tD9oS6dOnTB79mxcvXoV5cqVw5kzZ9CzZ0+1Cw0FGe8il8vRtGlTDB48WOP0qlWr5nvZYmRmZuLBgwfKk/T8HFM57Qt53Ue0+UhRTe37x2hPPyS/x4fC06dPMWjQIFhYWGDp0qUqA6oBKAdPa3q/xIsXLwr8BK6TJ0/i66+/RsuWLfHTTz8VaFlEH8JEgnSqcuXKEAQBFStWzPdVusqVK+Py5cvIzMxUuUX//jynT5+Gm5ubVq72ADn/gJ49exaJiYlYsGABGjRooCx//4lGiqtejx49UnZRAt4+CUXx5JF347958yYaN24s+odbsZ779++rXUG9f/++2tW3vCroCYStrS3Mzc0hl8s/WiJga2sLU1NT3L9/X23avXv3IJVK1a68Pnz4UOX7SE1NxYsXL9C8eXNl2btX0hUyMjLw4sWLXOO5ffs2Hjx4gBkzZqBLly7K8pMnT6rNm9f6zc825leFChVQoUIFREdH4/Hjx8rufx4eHpg+fToiIyORnZ2tst/nlba2w8/PD3PmzEFERAQqVKiA7OxslQG99vb2kMvlePjwofLhCMDbQalJSUkqdwNz+g4qV66M169ff3C/tbe3R1RUFFJTU1XuSmjaxvzYu3cv3rx5o7zbUhjHlEJe61Fxx+LOnTtqd/vyIq/tKaDdpCa/EhIS8NlnnyEjIwPr16/XmBTIZDIYGhri77//RseOHZXlGRkZuHHjBjp06JDv9V++fBkjR46Es7Mzfv/991zv1BNpA8dIkE61bdsWBgYGWLBggdrVHkEQkJCQkKdlJCQkqD0CUbEM4O3jKLOzszU+3SgrKytfb2dWPN/8/VvriqtZ726P4kflXc7OzrC2tsamTZuU/Y6Bt29nfb/LS4cOHRAXF4dNmzapxfHmzRu8fv06xzidnZ1RqlQpbNiwQeVW+tGjR3H37l20bNnyA1uqWU7bn1cGBgZo164d9u7di9u3b6tN18Zbew0MDNC0aVMcPHhQ5cTj33//RUREBNzd3dWuFm7cuBGZmZnKv0NDQ5GVlaWSSFSqVEk5VkBh06ZNH7wjoWnfEARB49uWFfX7oX0zP9tYEO7u7oiKisKVK1eUdyicnJxgbm6ufAJQnTp1RC9XW9tRoUIFeHh4YPfu3dixYwcqVqyo8ljMFi1aAABWrVql8rmQkBCV6cDb70BT/Xfo0AEXL17E8ePH1aYlJSUpj+fmzZsjKysLoaGhyunZ2dlYu3btB7fjQ27evIlp06ahZMmS6Nu3L4DCOaYU8lqPXl5eMDc3x5IlS9TesJyXK/x5bU+Bt9/Xx+jqlFevX7/GkCFDEBcXh6VLl+Z4Z8rS0hKNGzfGjh07VLpqbd++Ha9fv1Z7Z0he3b17F0OGDIG9vT2WLFmitYtmRLlhqko6VblyZYwZMwazZ89GbGwsWrduDXNzc8TExODAgQMIDAzEoEGDcl1Gly5dsG3bNkyfPl15cpOWlobTp0+jd+/eaN26NTw9PdGzZ08sWbIEN27cQNOmTWFkZIQHDx4gMjISkydPFt14Ozk5wcDAAMuWLUNycjKMjY3RqFEj1K9fHyVLlsSECRMQHBwMiUSC7du3q/1oGhsbY9SoUfj555/Rv39/dOjQAbGxsQgLC1Prd+zv7489e/bghx9+wJkzZ+Dm5obs7Gzcu3cPkZGRWL58eY7dx4yMjDB+/HhMnDgRQUFB8PX1VT7+1d7ePl+PWAWgPFmcO3cuOnbsCCMjI7Rq1UqtO1puxo0bhzNnziAwMBA9evRAzZo18erVK1y7dg2nT5/O8S2uYowZMwanTp1Cnz590KdPHxgYGGDjxo3IyMjAV199pTZ/ZmYmBgwYgA4dOuD+/ftYv3493N3d4ePjo5ynR48e+OGHHzBq1Cg0adIEN2/exIkTJz74iMXq1aujcuXKmDFjBuLi4mBhYYG9e/dqPFlV1O/UqVPh5eWV61uZxW5jQXh4eGDnzp2QSCTKRMLAwAD169fHiRMn4Onpme8XfWlrOzp37ozvvvsOz58/Vz66VcHR0REBAQHYuHEjkpKS0KBBA1y9ehXh4eFo3bq1yt2oOnXqIDQ0FIsWLUKVKlVga2uLxo0bY9CgQTh06BCGDRuGgIAA1KlTB2lpabh9+zb27t2LgwcPwtbWFt7e3nBzc1O2bzVr1sS+fftEn+yeP38e6enpkMvlSExMxIULF3Do0CFYWFhgwYIFKu8ZKIxjSkw9WlhYYOLEifj222/RvXt3+Pn5wcrKCjdv3sSbN28wY8aMXNeT1/YUePt97d69G9OnT0fdunVhZmb2wXdJaNP48eNx5coVdOvWDXfv3lV5d4O5ubny8cMAMHbsWPTq1QvBwcEIDAzEs2fPEBISAi8vL5WLFgCwdu1aJCUlKbtCHT58GM+ePQPw9v0ZlpaWSElJwaBBg5CUlIRBgwapPUSjcuXKqF+//kfacirOmEiQzg0ZMgRVq1bFypUrlc8eL1euHJo2bZqnHwHFyfyff/6JiIgI7Nu3D9bW1nBzc1PpHjRlyhQ4Oztjw4YNmDt3LgwMDGBvb4/OnTtrfJHPh9jZ2eGnn37CkiVLMHnyZGRnZ2P16tVo2LAhFi9ejBkzZuD333+HlZUVOnfurDwBeVdQUBAEQUBISAhmzJgBR0dH/Pnnn5g6darKE06kUikWLlyIlStXYvv27di/fz9MTU1RsWJFBAcHf7BbWNeuXWFiYoJly5Zh1qxZMDMzQ+vWrfHVV1/l+2keLi4u+OKLL7BhwwYcP34ccrkcBw8eFJVIlC5dGps3b8bChQuxf/9+hIaGwtraGjVr1sT48ePzFdf7atWqhXXr1mH27NlYsmQJBEGAi4sLfvvtN43vJfj++++xc+dOzJs3D5mZmfD19cW3336r0m0iMDAQMTEx2LJlC44fPw53d3eEhIR8MCkzMjLC4sWLMXXqVCxZsgQlSpRAmzZt0LdvX5W3cwNv77QFBwdj165d2LFjBwRByDGRELuNBaHozlS9enWVxMnDwwMnTpxQedqZWNrajnbt2uHnn39GRkaG8klO75o6dSoqVqyI8PBwHDhwAKVLl8bQoUPVXqw3YsQIPHnyBMuXL0dqaio8PT3RuHFjmJqaYs2aNViyZAkiIyOxbds2WFhYoGrVqhg1apRywLJUKsWff/6JadOmYceOHZBIJMqXoL3bte1D1qxZA+Dt/mNpaYkaNWpg1KhRCAwMVBvfVRjHlEJe67FHjx4oVaoUli5dikWLFsHQ0BDVq1fP00UMGxubPLenffr0wY0bNxAWFoaVK1fC3t6+UBMJxcsat27diq1bt6pMs7e3V0kk6tSpg5CQEMyaNQvTp0+Hubk5unfvji+//FJtuStWrFB5CMC+ffuwb98+AG+TZktLSyQmJipf4jp79my1ZQQEBDCRoI9CImh7pBsRFYhcLkfjxo3Rpk0btad90MejeGnfli1bcry7Q0RERP/hGAkiHUpPT1e7Rb9t2zYkJibC09NTR1ERERERfRi7NhHp0KVLlzB9+nS0b98e1tbWuH79OrZs2QKZTJbvAXdEREREhYGJBJEO2dvbo1y5clizZg1evXqFkiVLKt/KnN8Bq0RERESFgWMkiIiIiIhINI6RICIiIiIi0ZhIEBERERGRaEwkiIiIiIhINCYSREREREQkGhMJIiIiIiISjYkEERERERGJxkSCiIiIiIhEYyJBRERERESi/R+AYSGFreFZ0QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1088,9 +1120,18 @@ " xlabel=\"Percentage of the Population who Voted Democrat in 2012\",\n", " ylabel=\"Kinsey Index\",\n", " title=\"Average Democrat Turnout in the 2012 Presidential Election by Kinsey Index\",\n", - " xlim=(0,100)\n", + " xlim=(50,80)\n", ")" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While this once again reveals that queerer communities tend to vote blue more often, it is worth noting here that our data only ranges between 60% and 75%. That is a meaningful different (one so meaningful that it ultimately won an election) but it is useful to keep in mind how substantial this data is.\n", + "\n", + "Of course, in the 2012 presidential election, the Democrats won, so it's not suprising that across the nation, people tended to vote for the Democrats more than they did for the Republicans. Nevertheless, it's still clear that communities with a larger queer population tend to vote more blue than others." + ] } ], "metadata": {