cat-bookmarker/deps/jason/lib/jason.ex

243 lines
7.7 KiB
Elixir

defmodule Jason do
@moduledoc """
A blazing fast JSON parser and generator in pure Elixir.
"""
alias Jason.{Encode, Decoder, DecodeError, EncodeError, Formatter}
@type escape :: :json | :unicode_safe | :html_safe | :javascript_safe
@type maps :: :naive | :strict
@type encode_opt :: {:escape, escape} | {:maps, maps} | {:pretty, boolean | Formatter.opts()}
@type keys :: :atoms | :atoms! | :strings | :copy | (String.t() -> term)
@type strings :: :reference | :copy
@type floats :: :native | :decimals
@type objects :: :maps | :ordered_objects
@type decode_opt :: {:keys, keys} | {:strings, strings} | {:floats, floats} | {:objects, objects}
@doc """
Parses a JSON value from `input` iodata.
## Options
* `:keys` - controls how keys in objects are decoded. Possible values are:
* `:strings` (default) - decodes keys as binary strings,
* `:atoms` - keys are converted to atoms using `String.to_atom/1`,
* `:atoms!` - keys are converted to atoms using `String.to_existing_atom/1`,
* custom decoder - additionally a function accepting a string and returning a key
is accepted.
* `:strings` - controls how strings (including keys) are decoded. Possible values are:
* `:reference` (default) - when possible tries to create a sub-binary into the original
* `:copy` - always copies the strings. This option is especially useful when parts of the
decoded data will be stored for a long time (in ets or some process) to avoid keeping
the reference to the original data.
* `:floats` - controls how floats are decoded. Possible values are:
* `:native` (default) - Native conversion from binary to float using `:erlang.binary_to_float/1`,
* `:decimals` - uses `Decimal.new/1` to parse the binary into a Decimal struct with arbitrary precision.
* `:objects` - controls how objects are decoded. Possible values are:
* `:maps` (default) - objects are decoded as maps
* `:ordered_objects` - objects are decoded as `Jason.OrderedObject` structs
## Decoding keys to atoms
The `:atoms` option uses the `String.to_atom/1` call that can create atoms at runtime.
Since the atoms are not garbage collected, this can pose a DoS attack vector when used
on user-controlled data.
## Examples
iex> Jason.decode("{}")
{:ok, %{}}
iex> Jason.decode("invalid")
{:error, %Jason.DecodeError{data: "invalid", position: 0, token: nil}}
"""
@spec decode(iodata, [decode_opt]) :: {:ok, term} | {:error, DecodeError.t()}
def decode(input, opts \\ []) do
input = IO.iodata_to_binary(input)
Decoder.parse(input, format_decode_opts(opts))
end
@doc """
Parses a JSON value from `input` iodata.
Similar to `decode/2` except it will unwrap the error tuple and raise
in case of errors.
## Examples
iex> Jason.decode!("{}")
%{}
iex> Jason.decode!("invalid")
** (Jason.DecodeError) unexpected byte at position 0: 0x69 ("i")
"""
@spec decode!(iodata, [decode_opt]) :: term | no_return
def decode!(input, opts \\ []) do
case decode(input, opts) do
{:ok, result} -> result
{:error, error} -> raise error
end
end
@doc """
Generates JSON corresponding to `input`.
The generation is controlled by the `Jason.Encoder` protocol,
please refer to the module to read more on how to define the protocol
for custom data types.
## Options
* `:escape` - controls how strings are encoded. Possible values are:
* `:json` (default) - the regular JSON escaping as defined by RFC 7159.
* `:javascript_safe` - additionally escapes the LINE SEPARATOR (U+2028)
and PARAGRAPH SEPARATOR (U+2029) characters to make the produced JSON
valid JavaScript.
* `:html_safe` - similar to `:javascript_safe`, but also escapes the `/`
character to prevent XSS.
* `:unicode_safe` - escapes all non-ascii characters.
* `:maps` - controls how maps are encoded. Possible values are:
* `:strict` - checks the encoded map for duplicate keys and raises
if they appear. For example `%{:foo => 1, "foo" => 2}` would be
rejected, since both keys would be encoded to the string `"foo"`.
* `:naive` (default) - does not perform the check.
* `:pretty` - controls pretty printing of the output. Possible values are:
* `true` to pretty print with default configuration
* a keyword of options as specified by `Jason.Formatter.pretty_print/2`.
## Examples
iex> Jason.encode(%{a: 1})
{:ok, ~S|{"a":1}|}
iex> Jason.encode("\\xFF")
{:error, %Jason.EncodeError{message: "invalid byte 0xFF in <<255>>"}}
"""
@spec encode(term, [encode_opt]) ::
{:ok, String.t()} | {:error, EncodeError.t() | Exception.t()}
def encode(input, opts \\ []) do
case do_encode(input, format_encode_opts(opts)) do
{:ok, result} -> {:ok, IO.iodata_to_binary(result)}
{:error, error} -> {:error, error}
end
end
@doc """
Generates JSON corresponding to `input`.
Similar to `encode/1` except it will unwrap the error tuple and raise
in case of errors.
## Examples
iex> Jason.encode!(%{a: 1})
~S|{"a":1}|
iex> Jason.encode!("\\xFF")
** (Jason.EncodeError) invalid byte 0xFF in <<255>>
"""
@spec encode!(term, [encode_opt]) :: String.t() | no_return
def encode!(input, opts \\ []) do
case do_encode(input, format_encode_opts(opts)) do
{:ok, result} -> IO.iodata_to_binary(result)
{:error, error} -> raise error
end
end
@doc """
Generates JSON corresponding to `input` and returns iodata.
This function should be preferred to `encode/2`, if the generated
JSON will be handed over to one of the IO functions or sent
over the socket. The Erlang runtime is able to leverage vectorised
writes and avoid allocating a continuous buffer for the whole
resulting string, lowering memory use and increasing performance.
## Examples
iex> {:ok, iodata} = Jason.encode_to_iodata(%{a: 1})
iex> IO.iodata_to_binary(iodata)
~S|{"a":1}|
iex> Jason.encode_to_iodata("\\xFF")
{:error, %Jason.EncodeError{message: "invalid byte 0xFF in <<255>>"}}
"""
@spec encode_to_iodata(term, [encode_opt]) ::
{:ok, iodata} | {:error, EncodeError.t() | Exception.t()}
def encode_to_iodata(input, opts \\ []) do
do_encode(input, format_encode_opts(opts))
end
@doc """
Generates JSON corresponding to `input` and returns iodata.
Similar to `encode_to_iodata/1` except it will unwrap the error tuple
and raise in case of errors.
## Examples
iex> iodata = Jason.encode_to_iodata!(%{a: 1})
iex> IO.iodata_to_binary(iodata)
~S|{"a":1}|
iex> Jason.encode_to_iodata!("\\xFF")
** (Jason.EncodeError) invalid byte 0xFF in <<255>>
"""
@spec encode_to_iodata!(term, [encode_opt]) :: iodata | no_return
def encode_to_iodata!(input, opts \\ []) do
case do_encode(input, format_encode_opts(opts)) do
{:ok, result} -> result
{:error, error} -> raise error
end
end
defp do_encode(input, %{pretty: true} = opts) do
case Encode.encode(input, opts) do
{:ok, encoded} -> {:ok, Formatter.pretty_print_to_iodata(encoded)}
other -> other
end
end
defp do_encode(input, %{pretty: pretty} = opts) when pretty !== false do
case Encode.encode(input, opts) do
{:ok, encoded} -> {:ok, Formatter.pretty_print_to_iodata(encoded, pretty)}
other -> other
end
end
defp do_encode(input, opts) do
Encode.encode(input, opts)
end
defp format_encode_opts(opts) do
Enum.into(opts, %{escape: :json, maps: :naive})
end
defp format_decode_opts(opts) do
Enum.into(opts, %{keys: :strings, strings: :reference, floats: :native, objects: :maps})
end
end