defmodule Ecto.Migration do @moduledoc """ Migrations are used to modify your database schema over time. This module provides many helpers for migrating the database, allowing developers to use Elixir to alter their storage in a way that is database independent. Migrations typically provide two operations: `up` and `down`, allowing us to migrate the database forward or roll it back in case of errors. In order to manage migrations, Ecto creates a table called `schema_migrations` in the database, which stores all migrations that have already been executed. You can configure the name of this table with the `:migration_source` configuration option and the name of the repository that manages it with `:migration_repo`. Ecto locks the `schema_migrations` table when running migrations, guaranteeing two different servers cannot run the same migration at the same time. ## Creating your first migration Migrations are defined inside the "priv/REPO/migrations" where REPO is the last part of the repository name in underscore. For example, migrations for `MyApp.Repo` would be found in "priv/repo/migrations". For `MyApp.CustomRepo`, it would be found in "priv/custom_repo/migrations". Each file in the migrations directory has the following structure: ```text NUMBER_NAME.exs ``` The NUMBER is a unique number that identifies the migration. It is usually the timestamp of when the migration was created. The NAME must also be unique and it quickly identifies what the migration does. For example, if you need to track the "weather" in your system, you can start a new file at "priv/repo/migrations/20190417140000_add_weather_table.exs" that will have the following contents: defmodule MyRepo.Migrations.AddWeatherTable do use Ecto.Migration def up do create table("weather") do add :city, :string, size: 40 add :temp_lo, :integer add :temp_hi, :integer add :prcp, :float timestamps() end end def down do drop table("weather") end end The `up/0` function is responsible to migrate your database forward. the `down/0` function is executed whenever you want to rollback. The `down/0` function must always do the opposite of `up/0`. Inside those functions, we invoke the API defined in this module, you will find conveniences for managing tables, indexes, columns, references, as well as running custom SQL commands. To run a migration, we generally use Mix tasks. For example, you can run the migration above by going to the root of your project and typing: $ mix ecto.migrate You can also roll it back by calling: $ mix ecto.rollback --step 1 Note rollback requires us to say how much we want to rollback. On the other hand, `mix ecto.migrate` will always run all pending migrations. In practice, we don't create migration files by hand either, we typically use `mix ecto.gen.migration` to generate the file with the proper timestamp and then we just fill in its contents: $ mix ecto.gen.migration add_weather_table For the rest of this document, we will cover the migration APIs provided by Ecto. For a in-depth discussion of migrations and how to use them safely within your application and data, see the [Safe Ecto Migrations guide](https://fly.io/phoenix-files/safe-ecto-migrations/). ## Mix tasks As seen above, Ecto provides many Mix tasks to help developers work with migrations. We summarize them below: * `mix ecto.gen.migration` - generates a migration that the user can fill in with particular commands * `mix ecto.migrate` - migrates a repository * `mix ecto.migrations` - shows all migrations and their status * `mix ecto.rollback` - rolls back a particular migration Run `mix help COMMAND` for more information on a particular command. For a lower level API for running migrations, see `Ecto.Migrator`. ## Change Having to write both `up/0` and `down/0` functions for every migration is tedious and error prone. For this reason, Ecto allows you to define a `change/0` callback with all of the code you want to execute when migrating and Ecto will automatically figure out the `down/0` for you. For example, the migration above can be written as: defmodule MyRepo.Migrations.AddWeatherTable do use Ecto.Migration def change do create table("weather") do add :city, :string, size: 40 add :temp_lo, :integer add :temp_hi, :integer add :prcp, :float timestamps() end end end However, note that not all commands are reversible. Trying to rollback a non-reversible command will raise an `Ecto.MigrationError`. A notable command in this regard is `execute/2`, which is reversible in `change/0` by accepting a pair of plain SQL strings. The first is run on forward migrations (`up/0`) and the second when rolling back (`down/0`). If `up/0` and `down/0` are implemented in a migration, they take precedence, and `change/0` isn't invoked. ## Field Types The [Ecto primitive types](https://hexdocs.pm/ecto/Ecto.Schema.html#module-primitive-types) are mapped to the appropriate database type by the various database adapters. For example, `:string` is converted to `:varchar`, `:binary` to `:bytea` or `:blob`, and so on. In particular, note that: * the `:string` type in migrations by default has a limit of 255 characters. If you need more or less characters, pass the `:size` option, such as `add :field, :string, size: 10`. If you don't want to impose a limit, most databases support a `:text` type or similar * the `:binary` type in migrations by default has no size limit. If you want to impose a limit, pass the `:size` option accordingly. In MySQL, passing the size option changes the underlying field from "blob" to "varbinary" Any other type will be given as is to the database. For example, you can use `:text`, `:char`, or `:varchar` as types. Types that have spaces in their names can be wrapped in double quotes, such as `:"int unsigned"`, `:"time without time zone"`, etc. ## Executing and flushing Instructions inside of migrations are not executed immediately. Instead they are performed after the relevant `up`, `change`, or `down` callback terminates. However, in some situations you may want to guarantee that all of the previous steps have been executed before continuing. This is useful when you need to apply a set of changes to the table before continuing with the migration. This can be done with `flush/0`: def up do ... flush() ... end However `flush/0` will raise if it would be called from `change` function when doing a rollback. To avoid that we recommend to use `execute/2` with anonymous functions instead. For more information and example usage please take a look at `execute/2` function. ## Repo configuration ### Migrator configuration These options configure where Ecto stores and how Ecto runs your migrations: * `:migration_source` - Version numbers of migrations will be saved in a table named `schema_migrations` by default. You can configure the name of the table via: config :app, App.Repo, migration_source: "my_migrations" * `:migration_lock` - By default, Ecto will lock the migration source to throttle multiple nodes to run migrations one at a time. You can disable the `migration_lock` by setting it to `false`. You may also select a different locking strategy if supported by the adapter. See the adapter docs for more information. config :app, App.Repo, migration_lock: false # Or use a different locking strategy. For example, Postgres can use advisory # locks but be aware that your database configuration might not make this a good # fit. See the Ecto.Adapters.Postgres for more information: config :app, App.Repo, migration_lock: :pg_advisory_lock * `:migration_repo` - The migration repository is where the table managing the migrations will be stored (`migration_source` defines the table name). It defaults to the given repository itself but you can configure it via: config :app, App.Repo, migration_repo: App.MigrationRepo * `:migration_cast_version_column` - Ecto uses a `version` column of type `bigint` for the underlying migrations table (usually `schema_migrations`). By default, Ecto doesn't cast this to a different type when reading or writing to the database when running migrations. However, some web frameworks store this column as a string. For compatibility reasons, you can set this option to `true`, which makes Ecto perform a `CAST(version AS int)`. This used to be the default behavior up to Ecto 3.10, so if you are upgrading to 3.11+ and want to keep the old behavior, set this option to `true`. * `:priv` - the priv directory for the repo with the location of important assets, such as migrations. For a repository named `MyApp.FooRepo`, `:priv` defaults to "priv/foo_repo" and migrations should be placed at "priv/foo_repo/migrations" * `:start_apps_before_migration` - A list of applications to be started before running migrations. Used by `Ecto.Migrator.with_repo/3` and the migration tasks: config :app, App.Repo, start_apps_before_migration: [:ssl, :some_custom_logger] ### Migrations configuration These options configure the default values used by migrations. **It is generally discouraged to change any of those configurations after your database is deployed to production, as changing these options will retroactively change how all migrations work**. * `:migration_primary_key` - By default, Ecto uses the `:id` column with type `:bigserial`, but you can configure it via: config :app, App.Repo, migration_primary_key: [name: :uuid, type: :binary_id] config :app, App.Repo, migration_primary_key: false For Postgres version >= 10 `:identity` key may be used. By default, all :identity column will be bigints. You may provide optional parameters for `:start_value` and `:increment` to customize the created sequence. Config example: config :app, App.Repo, migration_primary_key: [type: :identity] * `:migration_foreign_key` - By default, Ecto uses the `primary_key` type for foreign keys when `references/2` is used, but you can configure it via: config :app, App.Repo, migration_foreign_key: [column: :uuid, type: :binary_id] * `:migration_timestamps` - By default, Ecto uses the `:naive_datetime` as the type, `:inserted_at` as the name of the column for storing insertion times, `:updated_at` as the name of the column for storing last-updated-at times, but you can configure it via: config :app, App.Repo, migration_timestamps: [ type: :utc_datetime, inserted_at: :created_at, updated_at: :changed_at ] * `:migration_default_prefix` - Ecto defaults to `nil` for the database prefix for migrations, but you can configure it via: config :app, App.Repo, migration_default_prefix: "my_prefix" ## Comments Migrations where you create or alter a table support specifying table and column comments. The same can be done when creating constraints and indexes. Not all databases support this feature. def up do create index("posts", [:name], comment: "Index Comment") create constraint("products", "price_must_be_positive", check: "price > 0", comment: "Constraint Comment") create table("weather", prefix: "north_america", comment: "Table Comment") do add :city, :string, size: 40, comment: "Column Comment" timestamps() end end ## Prefixes Migrations support specifying a table prefix or index prefix which will target either a schema (if using PostgreSQL) or a different database (if using MySQL). If no prefix is provided, the default schema or database is used. Any reference declared in the table migration refers by default to the table with the same declared prefix. The prefix is specified in the table options: def up do create table("weather", prefix: "north_america") do add :city, :string, size: 40 add :temp_lo, :integer add :temp_hi, :integer add :prcp, :float add :group_id, references(:groups) timestamps() end create index("weather", [:city], prefix: "north_america") end Note: if using MySQL with a prefixed table, you must use the same prefix for the references since cross-database references are not supported. When using a prefixed table with either MySQL or PostgreSQL, you must use the same prefix for the index field to ensure that you index the prefix-qualified table. ## Transaction Callbacks If possible, each migration runs inside a transaction. This is true for Postgres, but not true for MySQL, as the latter does not support DDL transactions. In some rare cases, you may need to execute some common behavior after beginning a migration transaction, or before committing that transaction. For instance, one might desire to set a `lock_timeout` for each lock in the migration transaction. You can do so by defining `c:after_begin/0` and `c:before_commit/0` callbacks to your migration. However, if you need do so for every migration module, implement this callback for every migration can be quite repetitive. Luckily, you can handle this by providing your migration module: defmodule MyApp.Migration do defmacro __using__(_) do quote do use Ecto.Migration def after_begin() do repo().query! "SET lock_timeout TO '5s'" end end end end Then in your migrations you can `use MyApp.Migration` to share this behavior among all your migrations. ## Additional resources * The [Safe Ecto Migrations guide](https://fly.io/phoenix-files/safe-ecto-migrations/) """ @doc """ Migration code to run immediately after the transaction is opened. Keep in mind that it is treated like any normal migration code, and should consider both the up *and* down cases of the migration. """ @callback after_begin() :: term @doc """ Migration code to run immediately before the transaction is closed. Keep in mind that it is treated like any normal migration code, and should consider both the up *and* down cases of the migration. """ @callback before_commit() :: term @optional_callbacks after_begin: 0, before_commit: 0 defmodule Index do @moduledoc """ Used internally by adapters. To define an index in a migration, see `Ecto.Migration.index/3`. """ defstruct table: nil, prefix: nil, name: nil, columns: [], unique: false, concurrently: false, using: nil, include: [], only: false, nulls_distinct: nil, where: nil, comment: nil, options: nil @type t :: %__MODULE__{ table: String.t(), prefix: atom, name: atom, columns: [atom | String.t()], unique: boolean, concurrently: boolean, using: atom | String.t(), only: boolean, include: [atom | String.t()], nulls_distinct: boolean | nil, where: atom | String.t(), comment: String.t() | nil, options: String.t() } end defmodule Table do @moduledoc """ Used internally by adapters. To define a table in a migration, see `Ecto.Migration.table/2`. """ defstruct name: nil, prefix: nil, comment: nil, primary_key: true, engine: nil, options: nil @type t :: %__MODULE__{ name: String.t(), prefix: atom | nil, comment: String.t() | nil, primary_key: boolean | keyword(), engine: atom, options: String.t() } end defmodule Reference do @moduledoc """ Used internally by adapters. To define a reference in a migration, see `Ecto.Migration.references/2`. """ defstruct name: nil, prefix: nil, table: nil, column: :id, type: :bigserial, on_delete: :nothing, on_update: :nothing, validate: true, with: [], match: nil @type t :: %__MODULE__{ table: String.t(), prefix: atom | nil, column: atom, type: atom, on_delete: atom, on_update: atom, validate: boolean, with: list, match: atom | nil } end defmodule Constraint do @moduledoc """ Used internally by adapters. To define a constraint in a migration, see `Ecto.Migration.constraint/3`. """ defstruct name: nil, table: nil, check: nil, exclude: nil, prefix: nil, comment: nil, validate: true @type t :: %__MODULE__{ name: atom, table: String.t(), prefix: atom | nil, check: String.t() | nil, exclude: String.t() | nil, comment: String.t() | nil, validate: boolean } end defmodule Command do @moduledoc """ Used internally by adapters. This represents the up and down legs of a reversible raw command that is usually defined with `Ecto.Migration.execute/1`. To define a reversible command in a migration, see `Ecto.Migration.execute/2`. """ defstruct up: nil, down: nil @type t :: %__MODULE__{up: String.t(), down: String.t()} end alias Ecto.Migration.Runner @doc false defmacro __using__(_) do quote location: :keep do import Ecto.Migration @disable_ddl_transaction false @disable_migration_lock false @before_compile Ecto.Migration end end @doc false defmacro __before_compile__(_env) do quote do def __migration__ do [ disable_ddl_transaction: @disable_ddl_transaction, disable_migration_lock: @disable_migration_lock ] end end end @doc """ Creates a table. By default, the table will also include an `:id` primary key field that has a type of `:bigserial`. Check the `table/2` docs for more information. ## Examples create table(:posts) do add :title, :string, default: "Untitled" add :body, :text timestamps() end """ defmacro create(object, do: block) do expand_create(object, :create, block) end @doc """ Creates a table if it does not exist. Works just like `create/2` but does not raise an error when the table already exists. """ defmacro create_if_not_exists(object, do: block) do expand_create(object, :create_if_not_exists, block) end defp expand_create(object, command, block) do quote do table = %Table{} = unquote(object) Runner.start_command({unquote(command), Ecto.Migration.__prefix__(table)}) if primary_key = Ecto.Migration.__primary_key__(table) do {name, type, opts} = primary_key add(name, type, opts) end unquote(block) Runner.end_command() table end end @doc """ Alters a table. ## Examples alter table("posts") do add :summary, :text modify :title, :text remove :views end """ defmacro alter(object, do: block) do quote do table = %Table{} = unquote(object) Runner.start_command({:alter, Ecto.Migration.__prefix__(table)}) unquote(block) Runner.end_command() end end @doc """ Creates one of the following: * an index * a table with only the :id primary key * a constraint When reversing (in a `change/0` running backwards), indexes are only dropped if they exist, and no errors are raised. To enforce dropping an index, use `drop/1`. ## Examples create index("posts", [:name]) create table("version") create constraint("products", "price_must_be_positive", check: "price > 0") """ def create(%Index{} = index) do Runner.execute({:create, __prefix__(index)}) index end def create(%Constraint{} = constraint) do Runner.execute({:create, __prefix__(constraint)}) constraint end def create(%Table{} = table) do do_create(table, :create) table end @doc """ Creates an index or a table with only `:id` field if one does not yet exist. ## Examples create_if_not_exists index("posts", [:name]) create_if_not_exists table("version") """ def create_if_not_exists(%Index{} = index) do Runner.execute({:create_if_not_exists, __prefix__(index)}) end def create_if_not_exists(%Table{} = table) do do_create(table, :create_if_not_exists) end defp do_create(table, command) do columns = if primary_key = Ecto.Migration.__primary_key__(table) do {name, type, opts} = primary_key [{:add, name, type, opts}] else [] end Runner.execute({command, __prefix__(table), columns}) end @doc """ Drops one of the following: * an index * a table * a constraint ## Examples drop index("posts", [:name]) drop table("posts") drop constraint("products", "price_must_be_positive") drop index("posts", [:name]), mode: :cascade drop table("posts"), mode: :cascade ## Options * `:mode` - when set to `:cascade`, automatically drop objects that depend on the index, and in turn all objects that depend on those objects on the table. Default is `:restrict` """ def drop(%{} = index_or_table_or_constraint, opts \\ []) when is_list(opts) do Runner.execute( {:drop, __prefix__(index_or_table_or_constraint), Keyword.get(opts, :mode, :restrict)} ) index_or_table_or_constraint end @doc """ Drops a table or index if it exists. Does not raise an error if the specified table or index does not exist. ## Examples drop_if_exists index("posts", [:name]) drop_if_exists table("posts") drop_if_exists index("posts", [:name]), mode: :cascade drop_if_exists table("posts"), mode: :cascade ## Options * `:mode` - when set to `:cascade`, automatically drop objects that depend on the index, and in turn all objects that depend on those objects on the table. Default is `:restrict` """ def drop_if_exists(%{} = index_or_table, opts \\ []) when is_list(opts) do Runner.execute( {:drop_if_exists, __prefix__(index_or_table), Keyword.get(opts, :mode, :restrict)} ) index_or_table end @doc """ Returns a table struct that can be given to `create/2`, `alter/2`, `drop/1`, etc. ## Examples create table("products") do add :name, :string add :price, :decimal end drop table("products") create table("products", primary_key: false) do add :name, :string add :price, :decimal end create table("daily_prices", primary_key: false, options: "PARTITION BY RANGE (date)") do add :name, :string, primary_key: true add :date, :date, primary_key: true add :price, :decimal end create table("users", primary_key: false) do add :id, :identity, primary_key: true, start_value: 100, increment: 20 end ## Options * `:primary_key` - when `false`, a primary key field is not generated on table creation. Alternatively, a keyword list in the same style of the `:migration_primary_key` repository configuration can be supplied to control the generation of the primary key field. The keyword list must include `:name` and `:type`. See `add/3` for further options. * `:engine` - customizes the table storage for supported databases. For MySQL, the default is InnoDB. * `:prefix` - the prefix for the table. This prefix will automatically be used for all constraints and references defined for this table unless explicitly overridden in said constraints/references. * `:comment` - adds a comment to the table. * `:options` - provide custom options that will be appended after the generated statement. For example, "WITH", "INHERITS", or "ON COMMIT" clauses. "PARTITION BY" can be provided for databases that support table partitioning. """ def table(name, opts \\ []) def table(name, opts) when is_atom(name) do table(Atom.to_string(name), opts) end def table(name, opts) when is_binary(name) and is_list(opts) do struct(%Table{name: name}, opts) end @doc ~S""" Returns an index struct that can be given to `create/1`, `drop/1`, etc. Expects the table name as the first argument and the index field(s) as the second. The fields can be atoms, representing columns, or strings, representing expressions that are sent as-is to the database. ## Options * `:name` - the name of the index. Defaults to "#{table}_#{column}_index". * `:prefix` - specify an optional prefix for the index. * `:unique` - indicates whether the index should be unique. Defaults to `false`. * `:comment` - adds a comment to the index. * `:using` - configures the index type. Some options are supported only by some databases: * `:concurrently` - indicates whether the index should be created/dropped concurrently in MSSQL and PostgreSQL. * `:include` - specify fields for a covering index, [supported by PostgreSQL only](https://www.postgresql.org/docs/current/indexes-index-only-scans.html). * `:nulls_distinct` - specify whether null values should be considered distinct for a unique index. Defaults to `nil`, which will not add the parameter to the generated SQL and thus use the database default. This option is currently only supported by PostgreSQL 15+. For MySQL, it is always false. For MSSQL, it is always true. See the dedicated section on this option for more information. * `:only` - indicates to not recurse creating indexes on partitions. [supported by PostgreSQL only](https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITIONING-DECLARATIVE-MAINTENANCE). * `:options` - configures index options (WITH clause) for both PostgreSQL and MSSQL * `:where` - specify conditions for a partial index (PostgreSQL) / filtered index (MSSQL). ## Adding/dropping indexes concurrently PostgreSQL supports adding/dropping indexes concurrently (see the [docs](http://www.postgresql.org/docs/current/static/sql-createindex.html)). However, this feature does not work well with the transactions used by Ecto to guarantee integrity during migrations. You can address this with two changes: 1. Change your repository to use PG advisory locks as the migration lock. Note this may not be supported by Postgres-like databases and proxies. 2. Disable DDL transactions. Doing this removes the guarantee that all of the changes in the migration will happen at once, so you will want to keep it short. If the database adapter supports several migration lock strategies, such as Postgrex, then review those strategies and consider using a strategy that utilizes advisory locks to faciliate running migrations one at a time even across multiple nodes. For example: ### Config file (PostgreSQL) config MyApp.Repo, migration_lock: :pg_advisory_lock ### Migration file defmodule MyRepo.Migrations.CreateIndexes do use Ecto.Migration @disable_ddl_transaction true def change do create index("posts", [:slug], concurrently: true) end end Alternately, you can add `@disable_migration_lock true` to your migration file. This would mean that different nodes in a multi-node setup could run the same migration at once. It is recommended to isolate your migrations to a single node when using concurrent index creation without an advisory lock. ## Index types When creating an index, the index type can be specified with the `:using` option. The `:using` option can be an atom or a string, and its value is passed to the generated `USING` clause as-is. For example, PostgreSQL supports several index types like B-tree (the default), Hash, GIN, and GiST. More information on index types can be found in the [PostgreSQL docs](http://www.postgresql.org/docs/current/indexes-types.html). ## Partial indexes Databases like PostgreSQL and MSSQL support partial indexes. A partial index is an index built over a subset of a table. The subset is defined by a conditional expression using the `:where` option. The `:where` option can be an atom or a string; its value is passed to the generated `WHERE` clause as-is. More information on partial indexes can be found in the [PostgreSQL docs](http://www.postgresql.org/docs/current/indexes-partial.html). ## The `:nulls_distinct` option A unique index does not prevent multiple null values by default in most databases. For example, imagine we have a "products" table and need to guarantee that sku's are unique within their category, but the category is optional. Creating a regular unique index over the sku and category_id fields with: create index("products", [:sku, :category_id], unique: true) will allow products with the same sku to be inserted if their category_id is `nil`. The `:nulls_distinct` option can be used to change this behavior by considering null values as equal, i.e. not distinct: create index("products", [:sku, :category_id], unique: true, nulls_distinct: false) This option is currently only supported by PostgreSQL 15+. As a workaround for older PostgreSQL versions and other databases, an additional partial unique index for the sku can be created: create index("products", [:sku, :category_id], unique: true) create index("products", [:sku], unique: true, where: "category_id IS NULL") ## Examples # With no name provided, the name of the below index defaults to # products_category_id_sku_index create index("products", [:category_id, :sku], unique: true) # The name can also be set explicitly create index("products", [:category_id, :sku], name: :my_special_name) # Indexes can be added concurrently create index("products", [:category_id, :sku], concurrently: true) # The index type can be specified create index("products", [:name], using: :hash) # Partial indexes are created by specifying a :where option create index("products", [:user_id], where: "price = 0", name: :free_products_index) # Covering indexes are created by specifying a :include option create index("products", [:user_id], include: [:category_id]) Indexes also support custom expressions. Some databases may require the index expression to be written between parentheses: # Create an index on a custom expression create index("products", ["(lower(name))"], name: :products_lower_name_index) # Create a tsvector GIN index on PostgreSQL create index("products", ["(to_tsvector('english', name))"], name: :products_name_vector, using: "GIN") """ def index(table, columns, opts \\ []) def index(table, columns, opts) when is_atom(table) do index(Atom.to_string(table), columns, opts) end def index(table, column, opts) when is_binary(table) and is_atom(column) do index(table, [column], opts) end def index(table, columns, opts) when is_binary(table) and is_list(columns) and is_list(opts) do validate_index_opts!(opts) index = struct(%Index{table: table, columns: columns}, opts) %{index | name: index.name || default_index_name(index)} end @doc """ Shortcut for creating a unique index. See `index/3` for more information. """ def unique_index(table, columns, opts \\ []) def unique_index(table, columns, opts) when is_list(opts) do index(table, columns, [unique: true] ++ opts) end defp default_index_name(index) do [index.table, index.columns, "index"] |> List.flatten() |> Enum.map(&to_string(&1)) |> Enum.map(&String.replace(&1, ~r"[^\w_]", "_")) |> Enum.map(&String.replace_trailing(&1, "_", "")) |> Enum.join("_") |> String.to_atom() end @doc """ Executes arbitrary SQL, anonymous function or a keyword command. The argument is typically a string, containing the SQL command to be executed. Keyword commands exist for non-SQL adapters and are not used in most situations. Supplying an anonymous function does allow for arbitrary code to execute as part of the migration. This is most often used in combination with `repo/0` by library authors who want to create high-level migration helpers. Reversible commands can be defined by calling `execute/2`. ## Examples execute "CREATE EXTENSION postgres_fdw" execute create: "posts", capped: true, size: 1024 execute(fn -> repo().query!("SELECT $1::integer + $2", [40, 2], [log: :info]) end) execute(fn -> repo().update_all("posts", set: [published: true]) end) """ def execute(command) when is_binary(command) or is_function(command, 0) or is_list(command) do Runner.execute(command) end @doc """ Executes reversible SQL commands. This is useful for database-specific functionality that does not warrant special support in Ecto, for example, creating and dropping a PostgreSQL extension. The `execute/2` form avoids having to define separate `up/0` and `down/0` blocks that each contain an `execute/1` expression. The allowed parameters are explained in `execute/1`. ## Examples defmodule MyApp.MyMigration do use Ecto.Migration def change do execute "CREATE EXTENSION postgres_fdw", "DROP EXTENSION postgres_fdw" execute(&execute_up/0, &execute_down/0) end defp execute_up, do: repo().query!("select 'Up query …';", [], [log: :info]) defp execute_down, do: repo().query!("select 'Down query …';", [], [log: :info]) end """ def execute(up, down) when (is_binary(up) or is_function(up, 0) or is_list(up)) and (is_binary(down) or is_function(down, 0) or is_list(down)) do Runner.execute(%Command{up: up, down: down}) end @doc """ Executes a SQL command from a file. The argument must be a path to a file containing a SQL command. Reversible commands can be defined by calling `execute_file/2`. """ def execute_file(path) when is_binary(path) do command = File.read!(path) Runner.execute(command) end @doc """ Executes reversible SQL commands from files. Each argument must be a path to a file containing a SQL command. See `execute/2` for more information on executing SQL commands. """ def execute_file(up_path, down_path) when is_binary(up_path) and is_binary(down_path) do up = File.read!(up_path) down = File.read!(down_path) Runner.execute(%Command{up: up, down: down}) end @doc """ Gets the migrator direction. """ @spec direction :: :up | :down def direction do Runner.migrator_direction() end @doc """ Gets the migrator repo. """ @spec repo :: Ecto.Repo.t() def repo do Runner.repo() end @doc """ Gets the migrator prefix. """ def prefix do Runner.prefix() end @doc """ Adds a column when creating or altering a table. This function also accepts Ecto primitive types as column types that are normalized by the database adapter. For example, `:string` is converted to `:varchar`, `:binary` to `:bits` or `:blob`, and so on. However, the column type is not always the same as the type used in your schema. For example, a schema that has a `:string` field can be supported by columns of type `:char`, `:varchar`, `:text`, and others. For this reason, this function also accepts `:text` and other type annotations that are native to the database. These are passed to the database as-is. To sum up, the column type may be either an Ecto primitive type, which is normalized in cases where the database does not understand it, such as `:string` or `:binary`, or a database type which is passed as-is. Custom Ecto types like `Ecto.UUID` are not supported because they are application-level concerns and may not always map to the database. Note: It may be necessary to quote case-sensitive, user-defined type names. For example, PostgreSQL normalizes all identifiers to lower case unless they are wrapped in double quotes. To ensure a case-sensitive type name is sent properly, it must be defined `:'"LikeThis"'` or `:"\"LikeThis\""`. This is not necessary for column names because Ecto quotes them automatically. Type names are not automatically quoted because they may be expressions such as `varchar(255)`. ## Examples create table("posts") do add :title, :string, default: "Untitled" end alter table("posts") do add :summary, :text # Database type add :object, :map # Elixir type which is handled by the database add :custom, :'"UserDefinedType"' # A case-sensitive, user-defined type name add :identity, :integer, generated: "BY DEFAULT AS IDENTITY" # Postgres generated identity column add :generated_psql, :string, generated: "ALWAYS AS (id::text) STORED" # Postgres calculated column add :generated_other, :string, generated: "CAST(id AS char)" # MySQL and TDS calculated column end ## Options * `:primary_key` - when `true`, marks this field as the primary key. If multiple fields are marked, a composite primary key will be created. * `:default` - the column's default value. It can be a string, number, empty list, list of strings, list of numbers, or a fragment generated by `fragment/1`. * `:null` - determines whether the column accepts null values. When not specified, the database will use its default behaviour (which is to treat the column as nullable in most databases). * `:size` - the size of the type (for example, the number of characters). The default is no size, except for `:string`, which defaults to `255`. * `:precision` - the precision for a numeric type. Required when `:scale` is specified. * `:scale` - the scale of a numeric type. Defaults to `0`. * `:comment` - adds a comment to the added column. * `:after` - positions field after the specified one. Only supported on MySQL, it is ignored by other databases. * `:generated` - a string representing the expression for a generated column. See above for a comprehensive set of examples for each of the built-in adapters. If specified alongside `:start_value`/`:increment`, those options will be ignored. * `:start_value` - option for `:identity` key, represents initial value in sequence generation. Default is defined by the database. * `:increment` - option for `:identity` key, represents increment value for sequence generation. Default is defined by the database. """ def add(column, type, opts \\ []) when is_atom(column) and is_list(opts) do validate_precision_opts!(opts, column) validate_type!(type) Runner.subcommand({:add, column, type, opts}) end @doc """ Adds a column if it does not exist yet when altering a table. If the `type` value is a `%Reference{}`, it is used to add a constraint. `type` and `opts` are exactly the same as in `add/3`. This command is not reversible as Ecto does not know about column existence before the creation attempt. ## Examples alter table("posts") do add_if_not_exists :title, :string, default: "" end """ def add_if_not_exists(column, type, opts \\ []) when is_atom(column) and is_list(opts) do validate_precision_opts!(opts, column) validate_type!(type) Runner.subcommand({:add_if_not_exists, column, type, opts}) end @doc """ Renames a table or index. ## Examples # rename a table rename table("posts"), to: table("new_posts") # rename an index rename(index(:people, [:name], name: "persons_name_index"), to: "people_name_index") """ def rename(%Table{} = table_current, to: %Table{} = table_new) do Runner.execute({:rename, __prefix__(table_current), __prefix__(table_new)}) table_new end def rename(%Index{} = current_index, to: new_name) do Runner.execute({:rename, current_index, new_name}) %{current_index | name: new_name} end @doc """ Renames a column. Note that this occurs outside of the `alter` statement. ## Examples rename table("posts"), :title, to: :summary """ def rename(%Table{} = table, current_column, to: new_column) when is_atom(current_column) and is_atom(new_column) do Runner.execute({:rename, __prefix__(table), current_column, new_column}) table end @doc """ Generates a fragment to be used as a default value. ## Examples create table("posts") do add :inserted_at, :naive_datetime, default: fragment("now()") end """ def fragment(expr) when is_binary(expr) do {:fragment, expr} end @doc """ Adds `:inserted_at` and `:updated_at` timestamp columns. Those columns are of `:naive_datetime` type and by default cannot be null. A list of `opts` can be given to customize the generated fields. Following options will override the repo configuration specified by `:migration_timestamps` option. ## Options * `:inserted_at` - the name of the column for storing insertion times. Setting it to `false` disables the column. * `:updated_at` - the name of the column for storing last-updated-at times. Setting it to `false` disables the column. * `:type` - the type of the `:inserted_at` and `:updated_at` columns. Defaults to `:naive_datetime`. * `:default` - the columns' default value. It can be a string, number, empty list, list of strings, list of numbers, or a fragment generated by `fragment/1`. """ def timestamps(opts \\ []) when is_list(opts) do opts = Keyword.merge(Runner.repo_config(:migration_timestamps, []), opts) opts = Keyword.put_new(opts, :null, false) {type, opts} = Keyword.pop(opts, :type, :naive_datetime) {inserted_at, opts} = Keyword.pop(opts, :inserted_at, :inserted_at) {updated_at, opts} = Keyword.pop(opts, :updated_at, :updated_at) if inserted_at != false, do: add(inserted_at, type, opts) if updated_at != false, do: add(updated_at, type, opts) end @doc """ Modifies the type of a column when altering a table. This command is not reversible unless the `:from` option is provided. When the `:from` option is set, the adapter will try to drop the corresponding foreign key constraints before modifying the type. Generally speaking, you want to pass the type and each option you are modifying to `:from`, so the column can be rolled back properly. However, note that `:from` cannot be be used to modify primary keys, as those are generally trickier to revert. See `add/3` for more information on supported types. If you want to modify a column without changing its type, such as adding or dropping a null constraints, consider using the `execute/2` command with the relevant SQL command instead of `modify/3`, if supported by your database. This may avoid redundant type updates and be more efficient, as an unnecessary type update can lock the table, even if the type actually doesn't change. ## Examples alter table("posts") do modify :title, :text end # Self rollback when using the :from option alter table("posts") do modify :title, :text, from: :string end # Modify column with rollback options alter table("posts") do modify :title, :text, null: false, from: {:string, null: true} end # Modify the :on_delete option of an existing foreign key alter table("comments") do modify :post_id, references(:posts, on_delete: :delete_all), from: references(:posts, on_delete: :nothing) end ## Options * `:null` - determines whether the column accepts null values. If this option is not set, the nullable behaviour of the underlying column is not modified. * `:default` - changes the default value of the column. * `:from` - specifies the current type and options of the column. * `:size` - specifies the size of the type (for example, the number of characters). The default is no size. * `:precision` - the precision for a numeric type. Required when `:scale` is specified. * `:scale` - the scale of a numeric type. Defaults to `0`. * `:comment` - adds a comment to the modified column. """ def modify(column, type, opts \\ []) when is_atom(column) and is_list(opts) do validate_precision_opts!(opts, column) validate_type!(type) Runner.subcommand({:modify, column, type, opts}) end @doc """ Removes a column when altering a table. This command is not reversible as Ecto does not know what type it should add the column back as. See `remove/3` as a reversible alternative. ## Examples alter table("posts") do remove :title end """ def remove(column) when is_atom(column) do Runner.subcommand({:remove, column}) end @doc """ Removes a column in a reversible way when altering a table. `type` and `opts` are exactly the same as in `add/3`, and they are used when the command is reversed. If the `type` value is a `%Reference{}`, it is used to remove the constraint. ## Examples alter table("posts") do remove :title, :string, default: "" end """ def remove(column, type, opts \\ []) when is_atom(column) do validate_type!(type) Runner.subcommand({:remove, column, type, opts}) end @doc """ Removes a column only if the column exists when altering the constraint if the reference type is passed once it only has the constraint name on reference structure. This command is not reversible as Ecto does not know about column existence before the removal attempt. ## Examples alter table("posts") do remove_if_exists :title, :string end """ def remove_if_exists(column, type) when is_atom(column) do validate_type!(type) Runner.subcommand({:remove_if_exists, column, type}) end @doc ~S""" Defines a foreign key. By default it assumes you are linking to the referenced table via its primary key with name `:id`. If you are using a non-default key setup (e.g. using `uuid` type keys) you must ensure you set the options, such as `:name` and `:type`, to match your target key. ## Examples create table("products") do add :group_id, references("groups") end create table("categories") do add :group_id, :integer # A composite foreign that points from categories (product_id, group_id) # to products (id, group_id) add :product_id, references("products", with: [group_id: :group_id]) end ## Options * `:name` - The name of the underlying reference, which defaults to "#{table}_#{column}_fkey". * `:column` - The column name in the referenced table, which defaults to `:id`. * `:prefix` - The prefix for the reference. Defaults to the prefix defined by the block's `table/2` struct (the "products" table in the example above), or `nil`. * `:type` - The foreign key type, which defaults to `:bigserial`. * `:on_delete` - What to do if the referenced entry is deleted. May be `:nothing` (default), `:delete_all`, `:nilify_all`, `{:nilify, columns}`, or `:restrict`. `{:nilify, columns}` expects a list of atoms for `columns` and is not supported by all databases. * `:on_update` - What to do if the referenced entry is updated. May be `:nothing` (default), `:update_all`, `:nilify_all`, or `:restrict`. * `:validate` - Whether or not to validate the foreign key constraint on creation or not. Only available in PostgreSQL, and should be followed by a command to validate the foreign key in a following migration if false. * `:with` - defines additional keys to the foreign key in order to build a composite foreign key * `:match` - select if the match is `:simple`, `:partial`, or `:full`. This is [supported only by PostgreSQL](https://www.postgresql.org/docs/current/sql-createtable.html) at the moment. """ def references(table, opts \\ []) def references(table, opts) when is_atom(table) do references(Atom.to_string(table), opts) end def references(table, opts) when is_binary(table) and is_list(opts) do opts = Keyword.merge(foreign_key_repo_opts(), opts) reference = struct(%Reference{table: table}, opts) check_on_delete!(reference.on_delete) check_on_update!(reference.on_update) reference end defp foreign_key_repo_opts() do case Runner.repo_config(:migration_primary_key, []) do false -> [] opts -> opts end |> Keyword.take([:type]) |> Keyword.merge(Runner.repo_config(:migration_foreign_key, [])) end defp check_on_delete!(on_delete) when on_delete in [:nothing, :delete_all, :nilify_all, :restrict], do: :ok defp check_on_delete!({:nilify, columns}) when is_list(columns) do unless Enum.all?(columns, &is_atom/1) do raise ArgumentError, "expected `columns` in `{:nilify, columns}` to be a list of atoms, got: #{inspect(columns)}" end :ok end defp check_on_delete!(on_delete) do raise ArgumentError, "unknown :on_delete value: #{inspect(on_delete)}" end defp check_on_update!(on_update) when on_update in [:nothing, :update_all, :nilify_all, :restrict], do: :ok defp check_on_update!(on_update) do raise ArgumentError, "unknown :on_update value: #{inspect(on_update)}" end @doc ~S""" Defines a constraint (either a check constraint or an exclusion constraint) to be evaluated by the database when a row is inserted or updated. ## Examples create constraint("users", :price_must_be_positive, check: "price > 0") create constraint("size_ranges", :no_overlap, exclude: ~s|gist (int4range("from", "to", '[]') WITH &&)|) drop constraint("products", "price_must_be_positive") ## Options * `:check` - A check constraint expression. Required when creating a check constraint. * `:exclude` - An exclusion constraint expression. Required when creating an exclusion constraint. * `:prefix` - The prefix for the table. * `:validate` - Whether or not to validate the constraint on creation (true by default). Only available in PostgreSQL, and should be followed by a command to validate the new constraint in a following migration if false. * `:comment` - adds a comment to the constraint. """ def constraint(table, name, opts \\ []) def constraint(table, name, opts) when is_atom(table) do constraint(Atom.to_string(table), name, opts) end def constraint(table, name, opts) when is_binary(table) and is_list(opts) do struct(%Constraint{table: table, name: name}, opts) end @doc "Executes queue migration commands." defmacro flush do quote do if direction() == :down and not function_exported?(__MODULE__, :down, 0) do raise "calling flush() inside change when doing rollback is not supported." else Runner.flush() end end end # Validation helpers defp validate_type!(:datetime) do raise ArgumentError, "the :datetime type in migrations is not supported, " <> "please use :utc_datetime or :naive_datetime instead" end defp validate_type!(type) when is_atom(type) do case Atom.to_string(type) do "Elixir." <> _ -> raise_invalid_migration_type!(type) _ -> :ok end end defp validate_type!({type, subtype}) when is_atom(type) and is_atom(subtype) do validate_type!(subtype) end defp validate_type!({type, subtype}) when is_atom(type) and is_tuple(subtype) do for t <- Tuple.to_list(subtype), do: validate_type!(t) end defp validate_type!(%Reference{} = reference) do reference end defp validate_type!(type) do raise_invalid_migration_type!(type) end defp raise_invalid_migration_type!(type) do raise ArgumentError, """ invalid migration type: #{inspect(type)}. Expected one of: * an atom, such as :string * a quoted atom, such as :"integer unsigned" * a tuple representing a composite type, such as {:array, :integer} or {:map, :string} * a reference, such as references(:users) Ecto types are automatically translated to database types. All other types are sent to the database as is. Types defined through Ecto.Type or Ecto.ParameterizedType aren't allowed, use their underlying types instead. """ end defp validate_index_opts!(opts) when is_list(opts) do if opts[:nulls_distinct] != nil and opts[:unique] != true do raise ArgumentError, "the `nulls_distinct` option can only be used with unique indexes" end case Keyword.get_values(opts, :where) do [_, _ | _] -> raise ArgumentError, "only one `where` keyword is supported when declaring a partial index. " <> "To specify multiple conditions, write a single WHERE clause using AND between them" _ -> :ok end end defp validate_index_opts!(opts), do: opts defp validate_precision_opts!(opts, column) when is_list(opts) do if opts[:scale] && !opts[:precision] do raise ArgumentError, "column #{Atom.to_string(column)} is missing precision option" end end @doc false def __prefix__(%{prefix: prefix} = index_or_table) do runner_prefix = Runner.prefix() cond do is_nil(prefix) -> prefix = runner_prefix || Runner.repo_config(:migration_default_prefix, nil) %{index_or_table | prefix: prefix} is_nil(runner_prefix) or runner_prefix == to_string(prefix) -> index_or_table true -> raise Ecto.MigrationError, message: "the :prefix option `#{prefix}` does not match the migrator prefix `#{runner_prefix}`" end end @doc false def __primary_key__(table) do case table.primary_key do false -> false true -> case Runner.repo_config(:migration_primary_key, []) do false -> false opts when is_list(opts) -> pk_opts_to_tuple(opts) end opts when is_list(opts) -> pk_opts_to_tuple(opts) _ -> raise ArgumentError, ":primary_key option must be either a boolean or a keyword list of options" end end defp pk_opts_to_tuple(opts) do opts = Keyword.put(opts, :primary_key, true) {name, opts} = Keyword.pop(opts, :name, :id) {type, opts} = Keyword.pop(opts, :type, :bigserial) {name, type, opts} end end