defmodule Jason do @moduledoc """ A blazing fast JSON parser and generator in pure Elixir. """ alias Jason.{Encode, Decoder, DecodeError, EncodeError, Formatter} @type escape :: :json | :unicode_safe | :html_safe | :javascript_safe @type maps :: :naive | :strict @type encode_opt :: {:escape, escape} | {:maps, maps} | {:pretty, boolean | Formatter.opts()} @type keys :: :atoms | :atoms! | :strings | :copy | (String.t() -> term) @type strings :: :reference | :copy @type floats :: :native | :decimals @type objects :: :maps | :ordered_objects @type decode_opt :: {:keys, keys} | {:strings, strings} | {:floats, floats} | {:objects, objects} @doc """ Parses a JSON value from `input` iodata. ## Options * `:keys` - controls how keys in objects are decoded. Possible values are: * `:strings` (default) - decodes keys as binary strings, * `:atoms` - keys are converted to atoms using `String.to_atom/1`, * `:atoms!` - keys are converted to atoms using `String.to_existing_atom/1`, * custom decoder - additionally a function accepting a string and returning a key is accepted. * `:strings` - controls how strings (including keys) are decoded. Possible values are: * `:reference` (default) - when possible tries to create a sub-binary into the original * `:copy` - always copies the strings. This option is especially useful when parts of the decoded data will be stored for a long time (in ets or some process) to avoid keeping the reference to the original data. * `:floats` - controls how floats are decoded. Possible values are: * `:native` (default) - Native conversion from binary to float using `:erlang.binary_to_float/1`, * `:decimals` - uses `Decimal.new/1` to parse the binary into a Decimal struct with arbitrary precision. * `:objects` - controls how objects are decoded. Possible values are: * `:maps` (default) - objects are decoded as maps * `:ordered_objects` - objects are decoded as `Jason.OrderedObject` structs ## Decoding keys to atoms The `:atoms` option uses the `String.to_atom/1` call that can create atoms at runtime. Since the atoms are not garbage collected, this can pose a DoS attack vector when used on user-controlled data. ## Examples iex> Jason.decode("{}") {:ok, %{}} iex> Jason.decode("invalid") {:error, %Jason.DecodeError{data: "invalid", position: 0, token: nil}} """ @spec decode(iodata, [decode_opt]) :: {:ok, term} | {:error, DecodeError.t()} def decode(input, opts \\ []) do input = IO.iodata_to_binary(input) Decoder.parse(input, format_decode_opts(opts)) end @doc """ Parses a JSON value from `input` iodata. Similar to `decode/2` except it will unwrap the error tuple and raise in case of errors. ## Examples iex> Jason.decode!("{}") %{} iex> Jason.decode!("invalid") ** (Jason.DecodeError) unexpected byte at position 0: 0x69 ("i") """ @spec decode!(iodata, [decode_opt]) :: term | no_return def decode!(input, opts \\ []) do case decode(input, opts) do {:ok, result} -> result {:error, error} -> raise error end end @doc """ Generates JSON corresponding to `input`. The generation is controlled by the `Jason.Encoder` protocol, please refer to the module to read more on how to define the protocol for custom data types. ## Options * `:escape` - controls how strings are encoded. Possible values are: * `:json` (default) - the regular JSON escaping as defined by RFC 7159. * `:javascript_safe` - additionally escapes the LINE SEPARATOR (U+2028) and PARAGRAPH SEPARATOR (U+2029) characters to make the produced JSON valid JavaScript. * `:html_safe` - similar to `:javascript_safe`, but also escapes the `/` character to prevent XSS. * `:unicode_safe` - escapes all non-ascii characters. * `:maps` - controls how maps are encoded. Possible values are: * `:strict` - checks the encoded map for duplicate keys and raises if they appear. For example `%{:foo => 1, "foo" => 2}` would be rejected, since both keys would be encoded to the string `"foo"`. * `:naive` (default) - does not perform the check. * `:pretty` - controls pretty printing of the output. Possible values are: * `true` to pretty print with default configuration * a keyword of options as specified by `Jason.Formatter.pretty_print/2`. ## Examples iex> Jason.encode(%{a: 1}) {:ok, ~S|{"a":1}|} iex> Jason.encode("\\xFF") {:error, %Jason.EncodeError{message: "invalid byte 0xFF in <<255>>"}} """ @spec encode(term, [encode_opt]) :: {:ok, String.t()} | {:error, EncodeError.t() | Exception.t()} def encode(input, opts \\ []) do case do_encode(input, format_encode_opts(opts)) do {:ok, result} -> {:ok, IO.iodata_to_binary(result)} {:error, error} -> {:error, error} end end @doc """ Generates JSON corresponding to `input`. Similar to `encode/1` except it will unwrap the error tuple and raise in case of errors. ## Examples iex> Jason.encode!(%{a: 1}) ~S|{"a":1}| iex> Jason.encode!("\\xFF") ** (Jason.EncodeError) invalid byte 0xFF in <<255>> """ @spec encode!(term, [encode_opt]) :: String.t() | no_return def encode!(input, opts \\ []) do case do_encode(input, format_encode_opts(opts)) do {:ok, result} -> IO.iodata_to_binary(result) {:error, error} -> raise error end end @doc """ Generates JSON corresponding to `input` and returns iodata. This function should be preferred to `encode/2`, if the generated JSON will be handed over to one of the IO functions or sent over the socket. The Erlang runtime is able to leverage vectorised writes and avoid allocating a continuous buffer for the whole resulting string, lowering memory use and increasing performance. ## Examples iex> {:ok, iodata} = Jason.encode_to_iodata(%{a: 1}) iex> IO.iodata_to_binary(iodata) ~S|{"a":1}| iex> Jason.encode_to_iodata("\\xFF") {:error, %Jason.EncodeError{message: "invalid byte 0xFF in <<255>>"}} """ @spec encode_to_iodata(term, [encode_opt]) :: {:ok, iodata} | {:error, EncodeError.t() | Exception.t()} def encode_to_iodata(input, opts \\ []) do do_encode(input, format_encode_opts(opts)) end @doc """ Generates JSON corresponding to `input` and returns iodata. Similar to `encode_to_iodata/1` except it will unwrap the error tuple and raise in case of errors. ## Examples iex> iodata = Jason.encode_to_iodata!(%{a: 1}) iex> IO.iodata_to_binary(iodata) ~S|{"a":1}| iex> Jason.encode_to_iodata!("\\xFF") ** (Jason.EncodeError) invalid byte 0xFF in <<255>> """ @spec encode_to_iodata!(term, [encode_opt]) :: iodata | no_return def encode_to_iodata!(input, opts \\ []) do case do_encode(input, format_encode_opts(opts)) do {:ok, result} -> result {:error, error} -> raise error end end defp do_encode(input, %{pretty: true} = opts) do case Encode.encode(input, opts) do {:ok, encoded} -> {:ok, Formatter.pretty_print_to_iodata(encoded)} other -> other end end defp do_encode(input, %{pretty: pretty} = opts) when pretty !== false do case Encode.encode(input, opts) do {:ok, encoded} -> {:ok, Formatter.pretty_print_to_iodata(encoded, pretty)} other -> other end end defp do_encode(input, opts) do Encode.encode(input, opts) end defp format_encode_opts(opts) do Enum.into(opts, %{escape: :json, maps: :naive}) end defp format_decode_opts(opts) do Enum.into(opts, %{keys: :strings, strings: :reference, floats: :native, objects: :maps}) end end